Prepared for: Dan Joseph Greeley, Colorado, U.S.A.

Prepared by: Ramboll Americas Engineering Solutions, Inc. Denver, Colorado, U.S.A.

Project Number 1940106341-003

July 2024

WELD COUNTY MONITORING NETWORK

AIR QUALITY AND METEOROLOGICAL MONITORING DATA: 2ND QUARTER 2024 SUMMARY REPORT

CONTENTS

ACF	RONYMS AND ABBREVIATIONS	III
1.	INTRODUCTION AND REPORT SUMMARY	1
2.	SUMMARY OF MONITORING PROGRAM	
	2.1 Monitoring Station Locations2.2 Monitoring Instrumentation	
3.	MONITORING METHODOLOGY	
	3.1 Data Collection, Management and Storage3.2 Quality Assurance/Quality Control	
4.	AIR QUALITY DATA SUMMARY	
	4.1 Gaseous O ₃ Data Summary	17
	4.2 Gaseous NO ₂ Data Summary	21
5.	METEOROLOGICAL DATA SUMMARY	24
	5.1 Wind Data Summary	24
	5.2 Precipitation Data Summary	
	5.3 Temperature Data Summary	
	5.4 Delta Temperature Data Summary	
	5.5 Barometric Pressure Data Summary	
	5.6 Relative Humidity Data Summary	
	5.7 Solar Radiation Data Summary	
6.	QUARTERLY REPORT DATA SUMMARY	58

Tables

Table 1.	AAQS for O ₃ and NO ₂	3
Table 2.	Weld County Air Quality Monitoring Station Equipment Specifications	5
Table 3.	Weld County Meteorological Monitoring Station Equipment Specifications	9
Table 4.	2nd Quarter 2024 Data Completeness for Continuous Measurement Devices	14
Table 5.	2 nd Quarter 2024 Accuracy and Precision	16
Table 6.	Weld County Network Q2 Highest Daily Maximum 8-hour Average O3	21
Table 7.	MSP NO ₂ 1-hour average NAAQS comparison	23
Table 8.	MSP NO ₂ annual average NAAQS comparison	23
Table 9.	Q2 2024 Meteorological Data Summary	28

FIGURES

Figure 1.	Weld County Monitoring Station Locations1
Figure 2.	Graphical Representation of Accuracy and Precision15
Figure 3.	$MSP \ Q2 \ 2024 \ Rolling \ 8\text{-hour averaged} \ O_3 \ \dots \dots \dots 18$
Figure 4.	Hereford Q2 2024 Rolling 8-hour averaged O_3 19
Figure 5.	$\label{eq:constraint} Orchard \ Q2 \ 2024 \ Rolling \ 8-hour \ averaged \ O_3 \ \dots \dots \dots 20$
Figure 6.	$MSP \ Q2 \ 2024 \ NO_2 \ 1\text{-}Hour \ Summary \dots \dots 22$
Figure 7.	MSP Q2 2024 Wind Rose25
Figure 8.	Hereford Q2 2024 Wind Rose26
Figure 9.	Orchard Q2 2024 Wind Rose27
Figure 10.	MSP Q2 2024 Precipitation Summary32
Figure 11.	Hereford Q2 2024 Precipitation Summary
Figure 12.	Orchard Q2 2024 Precipitation Summary34
Figure 13.	MSP Q2 2024 2-Meter Temperature Summary
Figure 14.	Hereford Q2 2024 2-Meter Temperature Summary37
Figure 15.	Orchard Q2 2024 2-Meter Temperature Summary
Figure 16.	MSP Q2 2024 10-Meter Temperature Summary
Figure 17.	Hereford Q2 2024 10-Meter Temperature Summary40
Figure 18.	Orchard Q2 2024 10-Meter Temperature Summary41
Figure 19.	MSP Q2 2024 Delta Temperature Summary43
Figure 20.	Hereford Q2 2024 Delta Temperature Summary44
Figure 21.	Orchard Q2 2024 Delta Temperature Summary45
Figure 22.	MSP Q2 2024 Barometric Pressure Summary47
Figure 23.	Hereford Q2 2024 Barometric Pressure Summary48
Figure 24.	Orchard Q2 2024 Barometric Pressure Summary49
Figure 25.	MSP Q2 2024 Relative Humidity Summary51
Figure 26.	Hereford Q2 2024 Relative Humidity Summary52
Figure 27.	Orchard Q2 2024 Relative Humidity Summary53
Figure 28.	MSP Q2 2024 Solar Radiation Summary55
Figure 29.	Hereford Q2 2024 Solar Radiation Summary56
Figure 30.	Orchard Q2 2024 Solar Radiation Summary57

APPENDICES

Appendix A: Q2 2024 Calibration and Audit Results

Appendix B: Q2 2024 Invalidation Periods

Appendix C: Q2 2024 Site Visitation Log

Appendix D: Q2 2024 Calibration Statistics

ACRONYMS AND ABBREVIATIONS

agl	Above Ground Level
рН	Acidity
NH3	Ammonia
AMoN	Ammonia Monitoring Network
NH4	Ammonium
Br	Bromide
Са	Calcium
CI	Chloride
CAAQS	Colorado Ambient Air Quality Standards
GHG	Greenhouse Gas
GPT	Gas Phase Titration
GPTZ	Gas Phase Titration Zero
L	Lab
Mg	Magnesium
m	Meter
µg/m3	Micrograms per meter cubed
µS/cm	Micro-Siemens per centimeter
mg/m3	Milligrams per meter cubed
MDT	Mountain Daylight Time
MSP	Missile Site Park
NAAQS	National Ambient Air Quality Standards
AAQS	National Ambient Air Quality Standards and Colorado Ambient Air Quality Standards
NADP	National Atmospheric Deposition Program
NIST	National Institute of Standards and Technology
NTN	National Trends Network
NO3	Nitrate
NO2	Nitrogen Dioxide
NO	Nitrogen Oxide
NOx	oxides of nitrogen
ppb	parts per billion
ppm	parts per million

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

PO4	Phosphate
К	Potassium
QAPP	Quality Assurance Project Plan
RH	Relative Humidity
Na	Sodium
S04	Sulfate
ТАРІ	Teledyne Advanced Pollution Instrumentation

1. INTRODUCTION AND REPORT SUMMARY

Weld County has commissioned the installation and operation of an air quality and meteorological monitoring network consisting of three monitoring stations located in areas that do not have existing air quality monitoring stations. The purpose of the monitoring network is to collect ambient air quality and meteorological data to inform current and future air quality management actions and policies. Weld County monitoring objectives support a wide variety of air quality management goals that were developed in consideration of current and expected future regulatory drivers related to ozone (O₃), greenhouse gases (GHG), and nitrogen air pollutants. The three stations are named Missile Site Park (MSP), Hereford, and Orchard and their locations are shown in Figure 1. MSP was operational and began collecting data on November 16, 2020. Hereford was operational and began collecting data on December 30, 2020.

All three monitoring stations measure O_3 concentrations and a full suite of meteorological parameters. A complete list of all collected meteorological measurements is included in **Chapter 2** of this report. In addition, oxides of nitrogen (NO_x) concentrations, measured as NO_x, nitrogen dioxide (NO₂) and nitrogen oxide (NO) are measured at MSP. Lastly, gaseous ammonia and precipitation chemistry are measured at MSP and Orchard. Based on an air monitoring network assessment conducted for Weld County,¹ it was recommended to monitor these compounds at these locations to best support Weld County's near-term data needs and air quality management goals. The Weld County Air Monitoring Network Assessment² considered locations of existing monitors, concentration trends, and spatial distributions of emissions.

Ramboll Americas Engineering Solutions, Inc. (Ramboll) has prepared this Quarterly Report for Weld County's air quality and meteorological monitoring program to summarize the final, validated data and provide transparent, publicly-available documentation regarding the quality assurance and quality control procedures. This report for the 2nd quarter of 2024 (Q2 2024) provides a monthly and quarterly summary of all air quality and meteorological data collected at Weld County's monitoring stations during the period from April 1, 2024 through June 30, 2024. Details regarding the monitoring program, the three monitoring station locations, equipment specifications, and quality assurance procedures are included in the following sections. Lastly, a comprehensive summary of Q2 2024 data is presented in comparison to National Ambient Air Quality Standards (NAAQS) and Colorado Ambient Air Quality Standards (CAAQS) to help readers understand how measurements compare to federal and state air quality standards.

NAAQS and CAAQS are collectively referred to as "AAQS". The AAQS for O₃ and NO₂ are listed in **Table 1** below. For O₃ there are two different AAQS: one standard of 0.075 part per million (ppm), which was established in 2008, and a more restrictive O₃ standard of 0.070 ppm, which was established in 2015. Both standards are still in effect; therefore, measured O₃ concentrations are compared to both standards. Similarly, for NO₂ there are two different AAQS: one standard is 100 parts per billion (ppb) for a 1-hr average and another standard is 53 ppb for a yearly average.

Both O₃ and NO₂ AAQS have both a "Primary" standard and a "Secondary" standard. The Primary standard is for protection of public health while the Secondary standard is for protection of public welfare (such as protection against damage to crops, animals, and vegetation). For O₃ and NO₂, the level of the Primary and the Secondary standards are the same.

Meteorology measurements for Q2 2024 were all within normal ranges for the area and season. At all three stations, average temperatures were coldest during April and warmest during June. Average solar radiation gradually increased as the Quarter progressed at all three sites while maximum solar radiation occurred in May at MSP and Orchard and in June at Hereford. Precipitation was highest at both Hereford and Orchard in June and peaked in May at MSP. Continuous gaseous pollutant measurements for Q2 2024 indicate that all three stations generally had good air quality. Concentrations remained below the respective AAQS values for NO₂, and O₃ had only one instance at MSP that exceeded the 2015 ozone AAQS value. At MSP, the highest hourly average NO₂ recorded during Q2 2024 was 22.0 ppb on April 12th. The maximum hourly average O₃ concentration at each

¹ Ramboll, Air Monitoring Network Assessment, 2020. Available by request.

² Id.

site was 68 ppb on May 14^{th} at Hereford, 82 ppb on May 6^{th} at Orchard, and 88 ppb on June 26^{th} at MSP.

It is important to note that O_3 and NO_2 measurements have now been collected for three years, enabling measurements to be compared to AAQS. The measured concentrations are compared to AAQS for informational purposes.

Pollutant (Year)	Primary/Secondary	Averaging Time	Level	Form		
				Annual fourth-highest		
O₃ (2015)	Primary & Secondary	8 hours	0.070 ppm	daily maximum 8-		
$O_3(2015)$	Frindly & Secondary	0 110015	0.070 ppm	hour concentrations,		
				averaged over 3 years		
				Annual fourth-highest		
$O_{2}(2009)$	Drimany & Sacandany	8 hours	0.075	daily maximum 8-		
O ₃ (2008)	Primary & Secondary		0.075 ppm	hour concentrations,		
				averaged over 3 years		
		1 hour		98 th percentile of 1-		
	During a mu		100 ppb	hour daily maximum		
NO ₂	Primary			concentrations,		
				averaged over 3 years		
	Primary & Secondary	1 year	53 ppb	Annual Mean		
Notes						
O ₃ ozone						
NO ₂ nitrogen dioxide						
ppb parts per billion						
ppm parts per million						
Adapted from the NAAQS	Table available here: https:	//www.epa.gov/crit	eria-air-pollutants/	naaqs-table		

Table 1.AAQS for O3 and NO2

2. SUMMARY OF MONITORING PROGRAM

2.1 Monitoring Station Locations

The three Weld County air quality station locations were guided by the *Weld County Air Monitoring Network Assessment*³ which analyzed Weld County's monitoring objectives, existing monitoring stations, and emissions source locations to determine high priority areas to conduct monitoring. Final station locations were determined in consideration of logistical requirements such as accessibility, availability of power, and proximity of large emissions sources which could affect the representativeness of station measurements. Weld County's monitoring network consists of three stations:

- MSP is the primary monitoring station and is located northwest of Greeley, CO. MSP monitors O₃, oxides of nitrogen (NO_x), wet deposition via the National Trends Network (NTN), gaseous ammonia via the Ammonia Monitoring Network (AMoN), and meteorological parameters from a 10-meter (m) tower;
- Hereford is a secondary station located in north-central Weld County and monitors O_3 and meteorological parameters from a 10-m tower; and
- Orchard is also a secondary station located in eastern Weld County to monitor O₃, wet deposition via the NTN, ammonia via the AMoN, and meteorological parameters from a 10-m tower.

2.2 Monitoring Instrumentation

The installation, configuration, calibration, and integration of the monitoring network along with technical specifications for all equipment and monitoring systems are summarized in the *Weld County Ambient Air Monitoring Program Quality Assurance Project Plan* (QAPP), referred to hereafter as the QAPP⁴. Weld County's monitoring program is conducted in accordance with the QAPP.

Table 2 and **Table 3** summarize the key air quality and meteorological monitoring equipment and measurement specifications for the Weld County stations. The monitoring systems, sampling frequencies, quality assurance program, and data management aspects of the monitoring program are described in the QAPP.⁵

³ Id.

⁴ Ramboll, Weld County Ambient Air Monitoring Program Quality Assurance Project Plan (QAPP), September 18th 2023. Available by request.

⁵ Id.

Measurement	leasurement Manufacturer Mode		Serial Number	Zero and Span Noise	Detection Limit	Drift Over 24-hour Period	Response Time	Units
				Missile Site Pa	ark			
O 3	ΤΑΡΙ	T400	5986	<0.2 ppb @ 0 ppb & <0.5% reading above 100 ppb	<0.4 ppb	<1 ppb @ 0 ppb & <1% of reading @ span	<30 seconds to 95%	ppb, ppm, µg/m³, mg/m³
NOx	ΤΑΡΙ	T200 (w/ sample conditioner; part number KIT000262)	6727	<0.1 ppb @ 0 ppb & <0.2% reading above 50 ppb	<0.2 ppb	<0.5 ppb @ 0 ppb & <0.5% of reading @ full scale	<80 seconds to 95%	ppb, ppm, µg/m³, mg/m³
Gas Dilution/O₃ Transfer Standard	TAPI	T700	4969	1% of reading (linearity)	N/A	<1.0 ppb @ 0 ppb	<20 seconds to 95% (photometer response)	N/A
NH3	Radiello	N/A	N/A	N/A	0.083 mg/L (Network) 0.013 mg/L (Lab)	N/A	N/A	N/A

Table 2. Weld County Air Quality Monitoring Station Equipment Specifications

Measurement	Manufacturer	Model	Serial Number	Zero and Span Noise	Detection Limit	Drift Over 24-hour Period	Response Time	Units
National Trends Network	N/A	N/A	N/A	N/A	Ca (0.023 mg/L) Mg (0.006 mg/L) K (0.005 mg/L) Na (0.010 mg/L) Br (0.006 mg/L) NH4 (0.017 mg/L) NO3 (0.018 mg/L) Cl (0.018 mg/L) SO4 (0.018 mg/L) PO4 (0.010 mg/L) Conductance (μS/cm) pH	N/A	N/A	N/A
				Orchard				
03	ТАРІ	T400	5985	<0.2 ppb @ 0 ppb & <0.5% reading above 100 ppb	<0.4 ppb	<1 ppb @ 0 ppb & <1% of reading @ span	<30 seconds to 95%	ppb, ppm, µg/m³, mg/m³
O₃ Transfer Standard	TAPI	T703	824	±1% of full scale (linearity)	N/A	<1 ppb @ 0 ppb (7 days) & <1% @ span	<20 seconds to 95% (photometer response)	N/A
NH ₃	Radiello	N/A		N/A	0.083 mg/L (Network) 0.013 mg/L (Lab)	N/A	N/A	N/A

Measurement	Manufacturer	Model	Serial Number	Zero and Span Noise	Detection Limit	Drift Over 24-hour Period	Response Time	Units
National Trends Network	N/A	N/A	N/A	N/A	Ca (0.023 mg/L) Mg (0.006 mg/L) K (0.005 mg/L) Na (0.010 mg/L) Br (0.006 mg/L) NH4 (0.017 mg/L) NO3 (0.018 mg/L) Cl (0.018 mg/L) SO4 (0.018 mg/L) PO4 (0.010 mg/L) Conductance (μS/cm) pH	N/A	N/A	N/A
				Hereford				
O 3	ТАРІ	T400	5984	<0.2 ppb @ 0 ppb & <0.5% reading above 100 ppb	<0.4 ppb	<1 ppb @ 0 ppb & <1% of reading @ span	<30 seconds to 95%	ppb, ppm, µg/m³, mg/m³
O₃ Transfer Standard	TAPI	T703	825	±1% of full scale (linearity)	N/A	<1 ppb @ 0 ppb (7 days) & <1% @ span	<20 seconds to 95% (photometer response)	N/A

Measurement Manufacturer		Mod	lel	Serial Number		o and n Noise	Detection Limit	Drift 24-h Peri	our	Response Time	Units	
Notes:												
O ₃	Ozone		ppb	parts	per billion	Mg	Magnesiu	m	NH_4	Ammo	onium	
NOx	Oxides of	nitrogen	ppm	parts	per million	К	Potassiur	n	NO3	Nitrat	e	
NH₃	Ammonia		µg/m³	Micro	grams per	Na	Sodium		Cl	Chlori	de	
mg/m ³	Milligrams	per meter cubed		meter	cubed	Br	Bromide		SO ₄	Sulfat	e	
PO ₄	Phosphate	2	Ca	Calciu	Im	рН	Acidity		TAPI	Teled	yne Advanced Poll	lution
			µS/cm		-Siemens entimeter					Instru	imentation	

Weld County Monitoring Network

Measurement	Count	Tower Location (m)	Manufacturer	Model	Serial Number	Accuracy	Range	Description
				Missile Sit	e Park			
Wind speed & direction	1	10	R.M. Young	05305V	180188	±0.2 m/s & ±3 degrees	0-50 m/s 0-355 deg	Wind monitor
Ambient temperature/Vertical temperature difference	2	2m and 10m	R.M. Young	41342VC	32951 (2 m) 32952 (10 m)	±0.1 °C	-50 to 50°C	Temperature probe with radiation shield
Relative humidity (RH)	1	2	Campbell Scientific/E+E Elektronik	EE181	20151600125038	$\pm 1.3\%$ RH 1	0-100%	Relative humidity and temperature sensor
Solar radiation	1	2	Hukseflux	LP02	48019	<0.15% per °C	0-2000 W/m²	Thermal pyranometer
Barometric pressure	1	2	Setra	278	7563464	±1.5 hPa ²	450-825 mmHg	Barometric pressure sensor
Precipitation	1	Ground	R.M. Young	52202	TB16137	2%-3% ³	0-50 mm/hr	Heated tipping bucket rain gauge
Precipitation-NTN	1	Ground	ETI Instrument Systems	NOAH IV	4310	±0.254 mm	0-280 in/hour	Weight-based rain gauge
Collection bucket- NTN	1	Ground	N-CON	00-120-2N	60441	N/A	N/A	Wet deposition collection buckets
				Orcha	rd			
Wind speed & direction	1	10	R.M. Young	05305V	180186	±0.2 m/s & ±3 degrees	0-50 m/s 0-355 deg	Wind monitor
Ambient temperature/Vertical temperature difference	2	2m and 10m	R.M. Young	41342VC	32953 (2 m) 32954 (10 m)	±0.1 °C	-50 to 50°C	Temperature probe with radiation shield

Table 3. Weld County Meteorological Monitoring Station Equipment Specifications

Measurement	Count	Tower Location (m)	Manufacturer	Model	Serial Number	Accuracy	Range	Description
Relative humidity	1	2	Campbell Scientific/E+E Elektronik	EE181	201516001269F1	$\pm 1.3\%$ RH 1	0-100%	Relative humidity and temperature sensor
Solar radiation	1	2	Hukseflux	LP02	48014	<0.15% per °C	0-2000 W/m²	Thermal pyranometer
Barometric pressure	1	2	Setra	278	7563445	± 1.5 hPa 2	450-825 mmHg	Barometric pressure sensor
Precipitation	1	Ground	R.M. Young	52202	TB16138	2% - 3% ³	0-50 mm/hr	Heated tipping bucket rain gauge
Precipitation-NTN	1	Ground	ETI Instrument Systems	NOAH IV	4311	±0.254 mm	0-280 in/hour	Weight-based rain gauge
Collection bucket- NTN	1	Ground	N-CON	00-120-2N	60442	N/A	N/A	Wet deposition collection buckets
				Herefo	ord			
Wind speed & direction	1	10	R.M. Young	05305V	180187	±0.2 m/s & ±3 degrees	0-50 m/s 0-355 deg	Wind monitor
Ambient temperature/Vertical temperature difference	2	2m and 10m	R.M. Young	41342VC	32950 (2 m) 32869 (10 m)	±0.1 °C	-50 to 50°C	Temperature probe with radiation shield
Relative humidity	1	2	Campbell Scientific/E+E Elektronik	EE181	2015160012638F	±1.3% RH ¹	0-100%	Relative humidity and temperature sensor
Solar radiation	1	2	Hukseflux	LP02	48015	<0.15% per °C	0-2000 W/m²	Thermal pyranometer
Barometric pressure	1	2	Setra	278	7573233	± 1.5 hPa 2	450-825 mmHg	Barometric pressure sensor
Precipitation	1	Ground	R.M. Young	52202	TB16139	2% - 3% ³	0-50 mm/hr	Heated tipping bucket rain gauge

Notes:					
%	Percent	m/s	Meters per second	W/m ²	Watts per meter squared
٥C	Degrees Celsius	RH	Relative humidity	mmHg	Millimeters of mercury
mm/hr	Millimeters per hour	deg	Degrees	in/hour	Inches per hour
¹ The mai ±2.3% R	•	acy range bas	sed on a temperature range -15	5 to 40 °C and RH betw	een 0 and 90%. Above 90% RH, the accuracy decreases to
		n the temper	ature is between -20 to 50 °C.		
	, 3				precipitation rate is between 25 mm/hr and 50 mm/hr.

3. MONITORING METHODOLOGY

3.1 Data Collection, Management and Storage

All meteorological and gas analyzer data are collected on a continuous basis using a Campbell Scientific Inc. (Campbell) CR3000 data logger. Data are then output to files on 15-minute, 60-minute, and 24-hour frequency. Custom 1-minute and 15-minute tables are also stored by the logger for gaseous calibration tracking and public access of meteorology, respectively. Data files are stored on the CR3000. All three stations are programmed to automatically download and save files from the CR3000 to a Ramboll computer on a daily basis. Data files are also manually saved to a separate Ramboll computer several times per week.

Real-time meteorological data for all three stations are also available on the Weld County Public Health Department website. Plots on the Weld County website provide wind speed, maximum wind gusts, wind direction, surface temperature, and precipitation for 15-minute intervals. Data are shown for the previous three days and are updated every 30 minutes.

3.2 Quality Assurance/Quality Control

The quality assurance objectives for this monitoring program are documented in the QAPP. These objectives are designed to be consistent with those outlined in 40 CFR Part 58 Appendix A, *US EPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume II: Ambient Air Monitoring Program*, and *US EPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements* (together, the "QA Handbooks").⁶⁷ The QA Handbooks specify the minimum system requirements applicable to data collection and quality assurance requirements for ambient air quality pollutants and meteorological measurements.

3.2.1 Accuracy and Performance Audits

The audit procedures for this monitoring program include semi-annual audits in accordance with the QAPP.⁸ Audits will be performed in calendar Quarters 2 and 4. Results from the Quarter 2 2024 audits and calibrations are available in **APPENDIX A**.

3.2.2 Calibration Protocol

The calibration procedures utilized for the project included automated routine calibration checks in accordance with the QAPP. For O₃ analyzers, calibration checks include Precision-Span-Zero checks at all three stations three times per week. For the NO_x analyzer at MSP, calibration checks include Precision-Span-Zero checks and gas-phase titration checks twice per week. Note that the Precision-Span-Zero check and titration checks occur on different days. Maintenance is performed as necessary in response to measured deviations during calibrations and as part of planned routine activities during

⁶ USEPA, Quality Assurance Handbook for Ambient Air Quality Monitoring Volume II: Ambient Air Quality Monitoring Program, January 2017. Available at: https://www.epa.gov/sites/default/files/2020-10/documents/final_handbook_document_1_17.pdf. Accessed February 2024.

⁷ USEPA, Quality Assurance Handbook for Ambient Air Quality Monitoring Volume IV: Meteorological Measurements, March 2008. Available at: https://www.epa.gov/sites/default/files/2021-04/documents/volume_iv_meteorological_measurements.pdf. Accessed July 2024.

⁸ Ramboll, Weld County Ambient Air Monitoring Program Quality Assurance Project Plan (QAPP), September 18th 2023. Available by request.

station inspections. A summary of calibration data is available in **APPENDIX D**. All analyzers were within USEPA criteria for the entire quarter. More detail is provided in the next section.

3.2.3 Data Completeness and Significant Events

Data completeness is calculated as the amount of valid data divided by the amount of potential data possible over a specified period, expressed as a percentage. In accordance with the QAPP, data are reviewed to determine that data are valid. Any data that is affected by known and qualifiable instrument performance problems, periods of routine maintenance, power failures, and/or site visits, or calibration/audit checks are invalidated. Hours with invalid data are removed from the final valid dataset and lower the calculated data completeness statistics. Program activities conducted during Q2 2024 included data collection, equipment programming and calibrations, station inspections, routine maintenance, equipment troubleshooting and repair, routine data acquisition, data screening and validation, and report preparation. Significant events that resulted in invalidation of data are documented in **APPENDIX D. APPENDIX C** contains the site log.

Consistent with data completeness requirements specified in the QA Handbooks, the quarterly data completeness goals are greater than (\geq) 75% for NO₂ data, and \geq 90% for meteorological data. For O₃, the data completeness goals are \geq 75% of the daily maximum 8-hour average O₃ during the O₃ season, which in Colorado is January to December⁹. However, over three consecutive ozone seasons the overall data completeness must be \geq 90% on average, thus we have set a goal of \geq 90%. A summary of data completeness targets and program results by month and for the quarter is presented in **Table 4** for all continuous monitoring systems. During Q2 2024, data losses occurred from regularly scheduled gas calibrations (483 hours), multi-point calibrations (115 hours), power outages (42 hours), manual gas calibrations (36 hours), instrument maintenance (24 hours), and other miscellaneous issues (281 hours).

Notable events that occurred during the quarter that resulted in data loss include: (1) MSP's NO₂ analyzer experienced a filter leak from 5/28 through 5/30 and (2) the inlet line at Orchard was contaminated by insects from 6/14 through 6/19. Despite these data losses, all data completeness goals were met at each of the three sites during Q2 2024. Data completeness for O₃ will be evaluated once the O₃ season is complete in December 2024 in accordance with the data completeness targets.

The QA Handbooks have also established goals for instrument accuracy and precision. **Figure 2** presents a graphic that depicts the importance of accuracy and precision. **Table 5** presents the instrument accuracy and precision targets and whether those targets were achieved by the instruments deployed at each station during the Q2 2024 semi-annual calibrations. Note that the wind speed at Orchard passed all audit points except the highest wind speed point of 25.6 m/s. All wind speed data below this value was considered valid during Q2; data points were invalidated in two instances when the measured wind speed exceeded this value. See **APPENDIX A** for more detail.

⁹ USEPA Ozone Seasons, February 13 2024. Available at: https://aqs.epa.gov/aqsweb/documents/codetables/ozone_seasons.html. Accessed: February 2024.

	Time	Completeness		Target Met?			
Measurement	Period	Target	Apr	Site Comp May	Jun	Q2 2024	(Y/N)
			Missile Site	-		Q	
NO ₂ [1]	Quarterly	≥75%	93%	89%	94%	92%	Yes
NO _x , NO ^[1]	N/A	N/A	93%	89%	94%	92%	N/A
O ₃ [1]	O₃ Season	≥90%	93%	100%	100%	98%	N/A
Wind Direction ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Wind Speed ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Delta Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Relative Humidity ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Solar Radiation ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Barometric Pressure ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Precipitation ^[2,3]	Quarterly	≥90%	100%	99%	100%	100%	Yes
			Herefo	rd			•
O ₃ [1]	O₃ Season	≥90%	100%	97%	100%	99%	N/A
Wind Direction ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Wind Speed ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Delta Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Relative Humidity ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Solar Radiation ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Barometric Pressure ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Precipitation ^[2,3]	Quarterly	≥90%	100%	100%	99%	100%	Yes
			Orcha	rd			
O ₃ [1]	O₃ Season	≥90%	93%	100%	83%	92%	N/A
Wind Direction ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Wind Speed ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes
Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes

Table 4. 2nd Quarter 2024 Data Completeness for Continuous Measurement Devices

Weld County Monitoring Network

Measurement	Time	Completeness		Site Completeness					
reasurement	Period	Target	Apr	May	Jun	Q2 2024	(Y/N)		
Delta Temperature ^[2,3]	Quarterly	≥90%	100%	100%	100%	100%	Yes		
Relative Humidity ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes		
Solar Radiation ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes		
Barometric Pressure ^[2]	Quarterly	≥90%	100%	100%	100%	100%	Yes		
Precipitation ^[2]	Quarterly	≥90%	100%	100%	99%	100%	Yes		

Notes:

^[1] USEPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume II: Ambient Air Quality Monitoring Program, recommends three consecutive response concentrations be within +/- 15% of the audit concentration for quarterly audits. For bi-weekly QC checks acceptable monitor responses are +/-15.1% for NO₂ and 7.1% for O₃. The data completeness target for NO₂ is ≥75%; there is no data completeness target for NO or NO_x. For O₃, the data completeness target is met for a 3-year period with an average of 90% of daily maximum 8-hour averages available for a 3-year ozone season period. In Colorado, the Ozone season is January through December (https://aqs.epa.gov/aqsweb/documents/codetables/ozone_seasons.html).

^[2] Table 0-9, USEPA Quality Assurance Handbook for Air Pollution Measurement Systems (Volume IV: Meteorological Measurements, Version 2.0).

^[3] Table 0-10, USEPA Quality Assurance Handbook for Air Pollution Measurement Systems (Volume IV: Meteorological Measurements, Version 2.0). Temperature is measured at 2 meters above ground level.

Figure 2. Graphical Representation of Accuracy and Precision

Measurement	Target Accuracy	Target Precision	Q2 2024 Calibration Results ¹
	Missile S	ite Park	
NO _x /NO/NO ₂	±15%	±15.1%	PASS ^[2]
O ₃	±15%	±7.1%	PASS
Wind Direction	±5°	±5°	PASS
Wind Speed	±0.2 m/s	±0.2 m/s	PASS
Temperature	±0.5 °C	±0.5 °C	PASS
Delta Temperature	±0.1 °C	±0.1 °C	PASS
Relative Humidity	±7%	±7%	PASS
Solar Radiation	±5%	±5%	PASS
Barometric Pressure	±2.25 mm Hg	±2.25 mm Hg	PASS
Precipitation	±10%	±10%	PASS
	Here	ford	
O ₃	±15%	±7.1%	PASS
Wind Direction	±5°	±5°	PASS
Wind Speed	±0.2 m/s	±0.2 m/s	PASS
Temperature	±0.5 °C	±0.5 °C	PASS
Delta Temperature	±0.1 °C	±0.1 °C	PASS
Relative Humidity	±7%	±7%	PASS
Solar Radiation	±5%	±5%	PASS
Barometric Pressure	±2.25 mm Hg	±2.25 mm Hg	PASS
Precipitation	±10%	±10%	PASS
	Orch	hard	
O ₃	±15%	±7.1%	PASS
Wind Direction	±5°	±5°	PASS
Wind Speed	±0.2 m/s	±0.2 m/s	FAIL ^[3]
Temperature	±0.5 °C	±0.5 °C	PASS
Delta Temperature	±0.1 °C	±0.1 °C	PASS
Relative Humidity	±7%	±7%	PASS
Solar Radiation	±5%	±5%	PASS
Barometric Pressure	±2.25 mm Hg	±2.25 mm Hg	PASS
Precipitation	±10%	±10%	PASS

Table 5. 2nd Quarter 2024 Accuracy and Precision

Notes:

 $^{\left[1\right] }$ Results of calibrations are found in Appendix A of this report.

^[2] The lowest flow set point on the low-flow mass flow controller (MFC) was found to be outside of acceptance criteria during the Q2 2024 audit check and was subsequently re-calibrated to be within specification. It was determined that this result did not impact data since this flow rate is outside the range of flows that the MFC operates in during all calibration checks.

^[3] The highest wind speed audit point was found to be outside of the acceptance criteria during the Q2 2024 audit check and was subsequently re-calibrated to be within specification. Data points at or above this threshold were invalidated during the period, resulting in the loss of two hourly data points.

4. AIR QUALITY DATA SUMMARY

Air quality data collected includes O₃ at all three stations and NO/NO_x/NO₂ at the MSP station. In addition, wet deposition and gaseous ammonia are measured in accordance with the National Atmospheric Deposition Program (NADP) standard operating procedures at MSP and Orchard. Q2 2024 wet deposition and gaseous ammonia data from NADP are not yet available. When Q2 2024 wet deposition and gaseous ammonia data are available a separate memorandum will be issued. This section summarizes the O₃ and NO₂ data collected during Q2 2024.

4.1 Gaseous O₃ Data Summary

O₃ data collected for Q2 2024 at all three stations was compared against the 2008 O₃ AAQS (0.075 ppm) and 2015 ozone AAQS (0.070 ppm). Both the 2008 and 2015 ozone AAQS are based on the fourth highest daily maximum 8-hour ozone concentration averaged over 3 years. The daily maximum 8-hour average ozone concentrations measured at all three stations during Q2 2024 remained below the level of the 2008 AAQS value; there was one exceedance of the 2015 AAQS value at MSP on June 26th. The four highest daily maximum 8-hour average ozone concentrations at all three stations for Q2 2024 are presented in **Table 6.** The rolling 8-hour averaged ozone concentrations at MSP, Hereford, and Orchard are presented in **Figure 3**, **Figure 4**, and **Figure 5**, respectively. Compliance with the AAQS standard for 2024 will be determined at the conclusion of the calendar year.

4.1.1 MSP O₃ Data Summary

At MSP, measured daily maximum 8-hour average ozone concentrations remained below the 2008 standard, and exceeded the 2015 standard once on June 26th.

4.1.2 Hereford O₃ Data Summary

At Hereford, measured daily maximum 8-hour average ozone concentrations remained below the 2008 and 2015 standards.

4.1.3 Orchard O₃ Data Summary

At Orchard, measured daily maximum 8-hour average ozone concentrations remained below the 2008 and 2015 standards. Note, the gap in the data from June 13th through June 18th is due to an issue with insects clogging the airflow and is indicated by the annotation in **Figure 5**.

Weld County Monitoring Network

Figure 3. MSP Q2 2024 Rolling 8-hour averaged O₃

Figure 4. Hereford Q2 2024 Rolling 8-hour averaged O₃

Site Name	1st Max 8- Hour (ppm)	Date 1st Max 8- Hour	2nd Max 8- Hour (ppm)	Date 2nd Max 8- Hour	3rd Max 8- Hour (ppm)	Date 3rd Max 8- Hour	4th Max 8- Hour (ppm)	Date 4th Max 8- Hour	8-Hour Averages Exceeding the 2008 AAQS Value	8-Hour Averages Exceeding the 2015 AAQS Value
MSP	0.072	6/26/2024	0.067	5/14/2024	0.067	6/30/2024	0.066	5/27/2024	0	1
Hereford	0.064	6/23/2024	0.064	6/26/2024	0.063	4/14/2024	0.063	5/14/2024	0	0
Orchard	0.067	5/6/2024	0.063	5/14/2024	0.063	5/17/2024	0.063	6/2/2024	0	0

Table 6. Weld County Network Q2 Highest Daily Maximum 8-hour Average O3

4.2 Gaseous NO₂ Data Summary

NO₂ data collected at MSP was compared against the AAQS standard for 1-hour averaged NO₂ (100 ppb). Once a full year of data has been collected, measurements will be compared to the annual standard (53 ppb). The 1-hour average NO₂ standard is based on the 98th percentile of 1-hour daily maximum concentrations, averaged over 3-years. The daily maximum 1-hour average concentration in Q2 2024 was 22.0 ppb, recorded on April 12th at 03:00 Mountain Daylight Time. A summary of NO₂ data is presented in **Figure 6**, **Table 7**, and **Table 8**. Note, data was invalidated between May 28th and May 31st due to a filter leak. See the annotation in **Figure 6**.

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

Figure 6. MSP Q2 2024 NO₂ 1-Hour Summary

Weld	County	Monitoring	Netwo

Missile Site Park	1st Maximum	2nd Maximum	3rd Maximum	4th Maximum	5th Maximum	6th Maximum	7th Maximum	8th Maximum	Number of Exceedances of the 1-hour Standard ^[1]
2022 NO ₂ (ppb)	67.2	63.4	62.0	58.0	57.4	56.9	54.5	54.5	0
2023 NO ₂ (ppb)	64.9	58.3	52.4	51.7	51.5	51.2	50.2	49.4	0
2024 NO ₂ (ppb) ^[2]	45.8	44.2	37.6	35.1	33.6	33	30.5	29.8	_[3]
Notes:									

Table 7. MSP NO₂ 1-hour average NAAQS comparison

^[1] The hourly NO₂ standard is based on the three-year average of the 98th percentile of 1-hour daily maximum concentrations averaged over 3-years.

^[2] Values for 2024 represent year-to-date highest daily 1-hour maximum concentrations.

^[3] Insufficient data is available to calculate the value. Compliance with the standard for 2024 will be evaluated at the conclusion of the calendar year.

MSP NO₂ annual average NAAQS comparison Table 8.

Q1 Quarterly Average	Q2 Quarterly Average	Q3 Quarterly Average	Q4 Quarterly Average	Annual Mean	Number of Exceedances of the Annual Standard ^[1]
13.6	4.3	5.7	10.3	8.5	0
13.4	4.8	4.8	9.7	8.0	0
8.6	3.9	-	-	-	_[2]
andard is based on th	ne annual mean of 1-1	nour average NO2 cor	ncentrations.		
	Average 13.6 13.4 8.6	Average Average 13.6 4.3 13.4 4.8 8.6 3.9	AverageAverageAverage13.64.35.713.44.84.88.63.9-	AverageAverageAverageAverage13.64.35.710.313.44.84.89.7	AverageAverageAverageAverageAnnual Mean13.64.35.710.38.513.44.84.89.78.08.63.9

^[2] Insufficient data is available to calculate the value. Compliance with the standard for 2024 will be evaluated at the conclusion of the calendar year.

5. METEOROLOGICAL DATA SUMMARY

This section summarizes the meteorological data collected during Q2 2024.

5.1 Wind Data Summary

The Q2 2024 average wind speed at the three stations at 10-m above ground level (agl) was 3.64 meters per second (m/s), 5.37 m/s, and 4.19 m/s at MSP, Hereford, and Orchard, respectively. The maximum hourly average wind speed for Q2 2024 was 14.75 m/s at MSP, 20.43 m/s at Hereford, and 17.11 m/s at Orchard. **Figure 7** through **Figure 9** present wind rose plots for each station during Q2 2024. These wind roses are a graphical representation of how the wind speed and direction were distributed for Q2 2024. On each wind rose, the bars at 0 degrees (°) correspond to wind coming from the North and the bars at 180° correspond to wind coming from the South. The size of each bar is an indication of how frequently the wind comes from a particular direction. The color of the bars represents the corresponding wind speed when the wind was blowing from a particular direction. Each station had a unique wind profile during Q2 2024. At the MSP station, wind direction had no directional trend and came more or less equally from all directions. The fastest winds at MSP came from the northwest. At the Hereford station winds mostly came from the northwestern quadrant and were also the fastest from the north and west. At the Orchard station winds mostly came from the west and east and were the strongest from the northwest. Monthly average hourly and maximum wind speeds per month at each station are listed in **Table 9** along with all other measured meteorological parameters.

Figure 7. MSP Q2 2024 Wind Rose

Records: 2184 Hereford (Q2 - 2024) <0.5 (calm)</p> Calms: 4 (0.2%) 0.5-1 00 Missing: 2 (0.1%) 1-2 Avg Speed: 5.4 2-4 Max Speed: 20.4 4-6 6-10 45° = >10 m/s 315° 270° 90° 2.5% 3% 3.5% 5% 5.5% 4% 4.5% 2% ί. 135° 225° 180°

Figure 8. Hereford Q2 2024 Wind Rose

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

Figure 9. Orchard Q2 2024 Wind Rose

Weld County Monitoring Network

Parameter	Units	Form	April	February	March
		Missile Site Park			
		Monthly Average	10.17	14.20	22.33
		Maximum Hourly	27.22	27.74	35.95
2-M Temperature	°C	Average	27.22	27.74	55.95
		Minimum Hourly	-2.62	0.64	8.29
		Average		0.04	
		Monthly Average	10.11	14.06	22.16
		Maximum Hourly	26.11	27.29	34.76
10-M Temperature	°C	Average			
		Minimum Hourly	-2.20	1.24	8.45
		Average			
		Monthly Average	-0.06	-0.13	-0.17
		Maximum Hourly	2.23	2.87	2.16
Delta Temperature	°C	Average			
		Minimum Hourly	-1.55	-2.03	-2.06
		Average			2.44
10-M Horizontal	m/s	Monthly Average	3.98	3.83	3.11
Wind Speed		Maximum Hourly	14.75	12.76	9.74
		Average	F2 00	48.28	E1 02
2-M Relative	Doreont	Monthly Average	52.90	48.28	51.03
Humidity	Percent	Maximum Hourly Average	100.00	95.10	100.00
		Monthly Average	633.62	633.30	635.12
Station Barometric	mm Hg	Maximum Hourly	055.02	033.30	055.12
Pressure	iiiii iig	Average	643.78	642.33	642.59
	in	Monthly Total	1.376	1.435	1.350
Station Precipitation	in/hr	Maximum Hourly Total	0.102	0.599	0.394
	,	Monthly Average	233.8	281.4	308.4
2-M Solar Radiation	W/m ²	Maximum Hourly			
	,	Average	1,058.0	1,077.0	1,074.0
		Hereford			<u> </u>
		Monthly Average	7.74	11.88	20.02
		Maximum Hourly	24.00	20.72	24.10
2-M Temperature	°C	Average	24.96	28.73	34.16
		Minimum Hourly	-5.97	-4.27	3.75
		Average	-3.37	-7.2/	5.75

Table 9. Q2 2024 Meteorological Data Summary

Parameter	Units	Form	April	February	March
		Monthly Average	7.87	11.86	20.10
		Maximum Hourly	24.22	27.61	33.18
10-M Temperature	°C	Average	24.22	27.01	55.10
		Minimum Hourly	-4.71	-2.95	4.57
		Average	-4.71	-2.95	4.57
		Monthly Average	0.13	-0.02	0.08
		Maximum Hourly	7,47	4.18	4.55
Delta Temperature	°C	Average	7.47	4.10	4.55
		Minimum Hourly	-1.93	-2.10	-1.89
		Average	1.95	2.10	1.09
10-M Horizontal		Monthly Average	5.74	5.66	4.69
Wind Speed	m/s	Maximum Hourly	20.43	16.00	14.83
		Average	20.45		
2-M Relative		Monthly Average	58.97	55.99	57.31
Humidity	Percent	Maximum Hourly	100.00	97.90	100.00
		Average			
Station Barometric	mm Hg	Monthly Average	625.47	625.33	627.35
Pressure		Maximum Hourly	634.87	633.84	634.44
		Average			
Station Precipitation	in	Monthly Total	1.352	1.622	3.059
	in/hr	Maximum Hourly Total	0.252	0.875	0.961
		Monthly Average	226.0	275.5	296.9
2-M Solar Radiation	W/m ²	Maximum Hourly	1,014.0	1,048.0	1,053.0
		Average	_,	_,	_,
	T	Orchard	1		
		Monthly Average	9.91	14.13	22.42
		Maximum Hourly	28.72	29.67	39.23
2-M Temperature	°C	Average			
		Minimum Hourly	-7.72	-3.16	7.04
		Average			
		Monthly Average	10.24	14.32	22.51
		Maximum Hourly	27.54	28.56	37.23
10-M Temperature	°C	Average			
		Minimum Hourly	-3.87	-1.05	9.54
		Average			
		Monthly Average	0.33	0.19	0.09
Dalka T		Maximum Hourly	7.26	5.74	5.21
Delta Temperature	°C	Average			
		Minimum Hourly	-1.92	-2.03	-2.22
		Average			

Parameter	Units	Form	April	February	March
10-M Horizontal		Monthly Average	4.51	4.09	3.99
Wind Speed	m/s	Maximum Hourly	17.11	14.53	12.28
		Average			
2-M Relative		Monthly Average	55.57	54.98	54.82
Humidity	Percent	Maximum Hourly	99.00	99.40	100.00
Turnuity		Average	99.00	99.40	100.00
Station Barometric		Monthly Average	645.47	645.07	646.53
Pressure	mm Hg	Maximum Hourly	656.09	654.30	654.37
riessure		Average	030.09	054.50	054.57
Station Precipitation	in	Monthly Total	1.271	0.981	1.562
	in/hr	Maximum Hourly Total	0.162	0.382	0.906
		Monthly Average	231.9	289.8	306.9
2-M Solar Radiation	W/m ²	Maximum Hourly	1,018.0	1,048.0	1,039.0
		Average	1,010.0	1,048.0	1,039.0

5.2 Precipitation Data Summary

Hourly precipitation data was collected at all three stations with a tipping bucket sensor at 1-m agl. June had the highest total monthly precipitation at Hereford and Orchard, while May had the highest total monthly precipitation at MSP. A summary of total monthly and maximum hourly precipitation for Q2 2024 at all three stations is presented in Figure 10 - Figure 12 and in Table 9.

Weld County Monitoring Network

Figure 12. Orchard Q2 2024 Precipitation Summary

5.3 Temperature Data Summary

Temperature data was collected at all three stations at heights of 2-m and 10-m agl. The highest temperatures occurred in June for 2-m and 10-m agl at all three stations. The lowest temperatures occurred in April for 2-m and 10-m agl at all three stations. A summary of monthly average and hourly maximum and minimum temperatures (for both 2-m and 10-m probes) for Q2 2024 at all three stations is presented in **Figure 13** - **Figure 18** and **Table 9**.

Weld County Monitoring Network

Figure 14. Hereford Q2 2024 2-Meter Temperature Summary

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

Figure 15. Orchard Q2 2024 2-Meter Temperature Summary

Weld County Monitoring Network

Figure 16. MSP Q2 2024 10-Meter Temperature Summary

Weld County Monitoring Network

Figure 17. Hereford Q2 2024 10-Meter Temperature Summary

Weld County Monitoring Network

Figure 18. Orchard Q2 2024 10-Meter Temperature Summary

5.4 Delta Temperature Data Summary

Delta temperature is a calculated measurement made by subtracting the 2-m temperature probe reading from the 10-m temperature probe reading (10-m - 2-m). It is an indicator of atmospheric stability and is important for modeling purposes. The two most isolated stations (Hereford and Orchard) exhibited the largest positive delta temperature extremes compared to the more 'urban' station of MSP. A summary of monthly average and hourly maximum and minimum delta temperature for Q2 2024 at all three stations is presented in **Figure 19** - **Figure 21** and **Table 9**.

Figure 19. MSP Q2 2024 Delta Temperature Summary

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

Figure 20. Hereford Q2 2024 Delta Temperature Summary

2nd Quarter 2024 Air Quality and Meteorological Monitoring Data Summary Report Weld County Monitoring Network

Figure 21. Orchard Q2 2024 Delta Temperature Summary

5.5 Barometric Pressure Data Summary

Barometric pressure data is collected using a barometric pressure sensor located inside each station shelter. The average monthly barometric pressure at each station was correlated with the elevation at each location, with the highest elevation station having the lowest monthly average barometric pressure (Hereford) and the lowest elevation station having the highest monthly average barometric pressure (Orchard). Maximum hourly average and monthly average barometric pressures for Q2 2024 at all three stations are summarized in Figure 22 - Figure 24 and Table 9.

Weld County Monitoring Network

Figure 24. Orchard Q2 2024 Barometric Pressure Summary

5.6 Relative Humidity Data Summary

Relative humidity data was collected at all three stations at 2-m agl. The average monthly relative humidity at all three stations ranged between 48.28-58.97%. Maximum hourly average and monthly average relative humidity for Q2 2024 at all three stations is summarized in Figure 25 - Figure 27 and Table 9.

5.7 Solar Radiation Data Summary

Solar Radiation data was collected at 2-m agl at all three stations using a cross-arm mounted sensor on the meteorology tower. The average solar radiation increased from April to June at all three stations. The 1-hour maximum solar radiation peaked in May at MSP and Orchard and in June at Hereford. Maximum hourly average and monthly average solar radiation for Q2 2024 at all three stations is summarized in Figure 28 - Figure 30 and Table 9.

6. QUARTERLY REPORT DATA SUMMARY

Program activities conducted during Q2 2024 included data collection, equipment programming and calibrations, station inspections, routine maintenance, equipment troubleshooting and repair, routine data acquisition, data screening and validation, and report preparation. Data completeness goals were met for all parameters for all stations. Data completeness for O₃ will be evaluated once the O₃ season is complete in December 2024 in accordance with the data completeness targets.

Air quality data collected includes O₃ at all three stations and NO/NO_x/NO₂ at the MSP station. All daily maximum 8-hour average O₃ concentrations measured at Hereford and Orchard stations were below both the 2008 and the 2015 AAQS values for Q2 2024, and there was one exceedance of the 2015 AAQS value at MSP during Q2 2024. Compliance with the AAQS standard for 2024 will be determined at the conclusion of the ozone season.

The maximum 1-hour average concentration of NO₂ at MSP of 45.8 ppb, which occurred in Q1, was below the AAQS standard of 100 ppb. The 1-hour average NO₂ standard is based on the 98th percentile of 1-hour daily maximum concentrations, averaged over 3-years. Compliance with the AAQS 1-hour (100 ppb) and annual (53 ppb) NO₂ standards for 2024 will be evaluated at the conclusion of the calendar year, after a full year of data has been collected.

The meteorological data was all within normal ranges for the area and season.

APPENDIX A: Q2 2024 CALIBRATION AND AUDIT RESULTS

APPENDIX A1: MSP CALIBRATION AND AUDIT RESULTS

DAND											
RAMBÓLI											
QUALITY ASSURANCE CALIBRATION RESULTS-AS FOUND											
WELD COUNTY MONITORING NETWORK: MISSILE SITE PARK SITE											
AUDIT DATE: 5/30/24 AUDIT CONDUCTED BY: Jake Zaragoza/Adam Christman											
10-METER HORIZONTAL WIND SPEED/DIRECTION AUDIT											
SENSOR MODEL: RM YOUNG 05305V											
	SENSOR SERIAL #:										
	IT DEVICE MODEL:	•									
	DEVICE SERIAL #: VICE EXPIRATION:										
AUDIT DE	VICE EXPIRATION.	10/20/2024				VALUE WITHIN					
PARAMETER	AUDIT METHOD	AUDIT VALUE	SENSOR RESPONSE	DIFFERENCE (M/S)	ACCEPTANCE CRITERIA	ACCEPTANCE					
HORIZONTAL						CRITERIA					
WIND SPEED	DC MOTOR RPM	M/S	M/S	M/S	M/S	N/A					
	0	0.000	0.004	0.00	0.20	YES					
	200	1.024	1.041	-0.02	0.20	YES					
	400 600	2.048 3.072	2.021 3.085	0.03 -0.01	0.20	YES YES					
	800	4.096	4.099	0.00	0.20	YES					
	1000	5.120	5.129	-0.01	0.20	YES					
	2000	10.240	10.213	0.03	0.20	YES					
	3000	15.360	15.335	0.02	0.20	YES					
	4000	20.480	20.458	0.02	0.20	YES					
	5000	25.600 TORQUE	25.577 CW =	<u>0.02</u> 0.1	0.20 <u><</u> 0.3 gm-cm	YES YES					
		VERIFICATION	CCW =	0.1	<u><</u> 0.3 gm-cm	YES					
WIND	ALIGNMENT	0	-0.73	0.73	5	YES					
DIRECTION	GAUGE	30	29.31	0.69	5	YES					
		60	60.25	0.25	5	YES					
		90	90.74 121.26	0.74	5	YES					
		120 150	121.26	<u>1.26</u> 1.16	5 5	YES YES					
		180	180.47	0.47	5	YES					
		210	210.01	0.00	5	YES					
		240	239.50	0.50	5	YES					
		270	269.82	0.18	5	YES					
		300 330	299.23 328.99	0.77 1.01	5 5	YES YES					
		360	358.60	1.40	5	YES					
		TORQUE	QUAD.#1 =	7	5 50 gm-cm	YES					
		VERIFICATION	QUAD.#2 =	7	<u>< 9.0 gm-cm</u>	YES					
					N=	-1.58					
0	MAG DEC:	7.62		4 QUAD VANE	E=	92.37					
	AS FOUND:	-1 +/- 5° (PASSED)		ALIGNMENT:	S= W=	179.59 268.61					
ALIGNMENT: WIND	TRANSIT		AUDIT =	-1	**-	YES					
DIRECTION	ALIGNMENT		SENSOR =	-1	5.0 degrees	YES					
KEY:			NOTES:		-						
HWS	Horizontal wind sp										
VWS WD	Vertical wind speed Wind direction	d									
M/S	Meters per second										
N/A	Not applicable										
MAG. DEC.	Magnetic Declinati	on									
CW	Clockwise										
CCW	Counter Clockwise	•									

RAMBOLI			TABLE A1-2								
		QUALITY ASSURA	NCE CALIBRATION R	RESULTS-AS LEFT							
	WEI		ORING NETWORK: M		SITE						
AUDIT DATE: 5/30/24											
AUDIT CONDUCTED BY: Jake Zaragoza/Adam Christman											
10-METER HORIZONTAL WIND SPEED/DIRECTION AUDIT											
SENSOR MODEL: RM YOUNG 05305V											
	SENSOR SERIAL #:	180188									
AUDIT DEVICE MODEL: RM Young 18802											
AUDIT DEVICE SERIAL #: CA5458											
AUDIT DE	VICE EXPIRATION:	10/26/2024				VALUE WITHIN					
PARAMETER	AUDIT METHOD	AUDIT VALUE	SENSOR RESPONSE	DIFFERENCE (M/S)	ACCEPTANCE CRITERIA	ACCEPTANCE CRITERIA					
HORIZONTAL											
WIND SPEED	DC MOTOR RPM	M/S 0.000	M/S 0.004	M/S 0.00	M/S 0.20	N/A YES					
	200	1.024	0.004	0.00	0.20	YES					
	400	2.048	1.985	0.06	0.20	YES					
	600	3.072	3.079	-0.01	0.20	YES					
	800	4.096	4.083	0.01	0.20	YES					
	1000 2000	5.120 10.240	5.090 10.196	0.03	0.20	YES YES					
	3000	15.360	15.302	0.04	0.20	YES					
	4000	20.480	20.421	0.06	0.20	YES					
	5000	25.600	25.541	0.06	0.20	YES					
	<u></u>	TORQUE	CW =	0.1	<u><</u> 0.3 gm-cm	YES					
		VERIFICATION	CCW =	0.1	<u><</u> 0.3 gm-cm	YES					
WIND DIRECTION	ALIGNMENT GAUGE	0 30	-0.73 29.31	0.73	<u> </u>	YES YES					
DIRECTION	GAUGE	60	60.25	0.05	5	YES					
		90	90.74	0.74	5	YES					
		120	121.26	1.26	5	YES					
		150	151.17	1.16	5	YES					
		180 210	180.47 210.01	0.47	5 5	YES YES					
		240	239.50	0.50	5	YES					
		270	269.82	0.18	5	YES					
		300	299.23	0.77	5	YES					
		330	328.99	1.01	5	YES					
		360 TORQUE	358.60 QUAD.#1 =	<u>1.40</u> 7	5 <u><</u> 9.0 gm-cm	YES YES					
		VERIFICATION	QUAD.#1 = QUAD.#2 =	7	<u><</u> 9.0 gm-cm <u><</u> 9.0 gm-cm	YES					
					<u>N=</u>	-1.58					
	MAG DEC:	7.62		4 QUAD VANE	E=	92.37					
° E CROSS ARM	AS FOUND:			ALIGNMENT:	S=	179.59					
ALIGNMENT: WIND	TRANSIT	+/- 5° (PASSED)	AUDIT =	-1	W=	268.61 YES					
DIRECTION	ALIGNMENT		SENSOR =	-1	5.0 degrees	YES					
KEY:			NOTES: WS sensor		-						
HWS	Horizontal wind sp			/	-						
VWS	Vertical wind spee	d									
WD M/S	Wind direction Meters per second										
N/A	Not applicable										
MAG. DEC.	Magnetic Declinati	on	<u></u>								
CW	Clockwise										
CCW	Counter Clockwise)									

RAMBOLL									
RAMBULI				TABL	E A1-3				
			QUALITY ASS	SURANCE	CALIBRATI	ON RESULTS			
		WELD CO	UNTY MONIT	ORING NE	WORK: M	SSILE SITE PAR	K SITE		
					TE: 5/30/24				
		AUD				Adam Christma	in		
			TEMPERATI	JRE/DELT	A TEMERA				
		RM YOUNG 4	-						
		032951 (2M)/0	• •						
		Omega HH42/	4						
AUDIT DEVIC									
AUDIT DEVICE E									
WATER BATH	AUDIT	2-M	2-M VS.	10-M	10-M VS.	ACCEPTANCE	DELTA T:	ACCEPTANCE	VALUE WITHIN
	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	N/A
ICE BATH	0.29	0.32	0.03	0.32	0.03	0.50	0.00	0.1	YES
AMBIENT BATH	22.66	22.65	-0.01	22.62	-0.04	0.50	-0.03	0.1	YES
НОТ ВАТН	46.93	46.89	-0.04	46.86	-0.07	0.50	-0.03	0.1	YES
NOTES: Cleaned as	spirator hous	ing units.							

r

RAMBOLL

TABLE A1-4 QUALITY ASSURANCE CALIBRATION RESULTS WELD COUNTY MONITORING NETWORK: MISSILE SITE PARK SITE

	AUDIT DAT	E: 5/30/24								
AUDIT CONDUCTED BY: Jake Zaragoza/Adam Christman										
RELATIVE HUMIDITY AUDIT										
					VALUE					
	AUDIT	2-M		ACCEPTANCE	WITHIN					
	SENSOR	SENSOR	ABSOLUTE %	CRITERIA	ACCEPTANO					
	VALUE	VALUE	RH DIFF.	(+/-)	CRITERIA					
UNITS	% RH	% RH	% RH	PERCENT	N/A					
	23.74	27.36	3.62	7.0	YES					
	23.26	26.88	3.62	7.0	YES					
	23.31	26.43	3.12	7.0	YES					
	22.60	25.77	3.17	7.0	YES					
		AUDIT DAT ONDUCTED BY: Jake RELATIVE HUN AUDIT SENSOR VALUE UNITS % RH 23.74 23.26 23.31	AUDIT DATE: 5/30/24 ONDUCTED BY: Jake Zaragoza RELATIVE HUMIDITY AUD SENSOR SENSOR VALUE VALUE UNITS % RH % RH 23.74 27.36 23.26 26.88 23.31 26.43	AUDIT DATE: 5/30/24 ONDUCTED BY: Jake Zaragoza/Adam Christman RELATIVE HUMIDITY AUDIT AUDIT 2-M SENSOR SENSOR ABSOLUTE % VALUE VALUE RH DIFF. UNITS % RH % RH % RH 23.74 27.36 3.62 23.26 26.88 3.62	ONDUCTED BY: Jake Zaragoza/Adam Christman RELATIVE HUMIDITY AUDIT AUDIT 2-M ACCEPTANCE SENSOR SENSOR ABSOLUTE % CRITERIA VALUE VALUE RH DIFF. (+/-) UNITS % RH % RH % RH PERCENT 23.74 27.36 3.62 7.0 23.26 26.88 3.62 7.0 23.31 26.43 3.12 7.0					

NOTES:

		BARO	METRIC PR	ESSURE A	UDIT		
SENSOR MODEL:	Setra 278						
SENSOR SERIAL #:	7563464						
AUDIT DEVICE MODEL:	BVC10						
AUDIT DEVICE SERIAL #:	2972						
AUDIT DEVICE EXPIRATION:	11/24/2024						
							VALUE
			AUDIT	2-M		ACCEPTANCE	WITHIN
			SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE
BAROMETRIC PRESSURE			VALUE	VALUE	DIFF.	(+/-)	CRITERIA
		UNITS	mm Hg	mm Hg	mm Hg	mm Hg	N/A
	AVERAGE:		635.6	635.8	0.16	2.25	YES
NOTES:							

SEN	SOR MODEL: RM Young Hea	ted Rain Gau	iae Model 5	2202			
	SOR SERIAL: TB16137		J				
AUDIT DE	VICE MODEL: Drip Bottle						
	ICE SERIAL #: N/A						
			AUDIT S	2-M	PERCENT	ACCEPTANCE	VALUE
PRECIPITATION			VALUE	SENSOR	DIFF.	CRITERIA	WITHIN
As Found							
300 ML WATER =	= 150 TIPS/0.3"	UNITS	Inches	Inches	PERCENT	PERCENT	N/A
Volume	1000		1.968505	1.97	0.1%	10	YES
As Left							
300 ML WATER =	= 150 TIPS/0.3"	UNITS	Inches	Inches	PERCENT	PERCENT	N/A
Volume	1000		1.968505	2.073	5.3%	10	YES

NEL TEMPER	RATURE AU	DIT		
00				
				VALUE
AUDIT	2-M		ACCEPTANCE	WITHIN
SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE
VALUE	VALUE	DIFF.	(+/-)	CRITERIA
DEG. C	DEG. C	DEG. C	ABS. DIFF	N/A
23.20	23.88	0.68	2.1	YES
	AUDIT SENSOR VALUE DEG. C	AUDIT 2-M SENSOR SENSOR VALUE VALUE S DEG. C DEG. C	AUDIT 2-M SENSOR SENSOR ABSOLUTE VALUE VALUE DIFF. 5 DEG. C DEG. C DEG. C	AUDIT 2-M ACCEPTANCE SENSOR SENSOR ABSOLUTE CRITERIA VALUE VALUE DIFF. (+/-) S DEG. C DEG. C DEG. C ABS. DIFF

RAMBOLL	Table A1-5 Solar Radiation Audit Data									
Audit Date: 5/30/2024										
Site Sensor: Hukeflux LP02; Serial # 48019										
Audit Sensor: ; Serial # SR05-A1; 19771										
Audit Sensor Expiration: 11/16/2024										
Timestamp	Audit Sensor (w/m2)	Site Sensor (w/m2)								
0930	865	846								
0945	901	864								
1000	916	923								
1015	965	954								
1030	990	976								
1045	999	1008								
AVG	020.2	028 5								
AVG	939.3 % DIFF=	928.5 1.15%								
	% DIFF=	1.15%								
NOTES:										

TABLE A1-6 MISSILE SITE PARK GAS Q2 AS FOUND REPORT

AUDIT DATE: 4/07/2024 SITE: MISSILE SITE PARK, WELD COUNTY, CO AUDITED BY: JAKE ZARAGOZA, RAMBOLL

AUDIT DEVICE: TELEDYNE API T700 MULTI-GAS CALIBRATOR SERIAL NUMBER: 4969:

								BRATOR SERIAL R SERIAL NUMBE);		
				NO Audit		0 NO _v Analvzer	Range = 0 - 500) PPB NO _v /Serial	Number: 6727			1
Ouput F	Flow (slpm)	Audit P	oint	NO Audit Conc.	NOx Audit			NO ₂	NO _x			
Audit Gas	Dilution		onn	(PPB)	Conc. (PPB)		% diff.		% diff.		% diff.	Pass/Fail
0.0000	5.0140	Zero)	0.0	0.0	0.7	N/A	0.4	N/A	0.2	N/A	N/A
0.0083	5.0120	2		50.6	50.8	48.2	-4.8	48.7	-4.2	0.4	N/A	PASS
0.0165	5.0020	3		100.2	100.5	97.7	-2.5	97.9	-2.6	0.1	N/A	PASS
0.0329	4.9840	4		200.1	200.8	196.8	-1.6	196.4	-2.2	0.2	N/A	PASS
0.0657	4.9500	5		399.4	400.7	395.2	-1.1	396.6	-1.0	0.3	N/A	PASS
			NO ₂ Audit	t (Gas Phas	e Titratior	n) -TAPI T200 NC	O _x Analyzer Ran	ge = 0 - 500 PPB	NO _x /Serial Num	nber: 6727		
Ouput F Audit Gas	Flow (slpm) Dilution	Audit Point	NO₂ Audit Conc. (PPB)		onc. (PPB)	NO Orig. (PPB)	NO rem. (PPB)	NO _X (PPB)	NO ₂ (PPB)	NO₂ % diff.	Molybdenum Converter Efficiency (%) >96% = PASS	NO ₂ Pass/F
		Zero	0.0			N/A				N/A	N/A	N/A
0.0165	4.8990	1 (40 PPB O ₃)	41.1	100	.3	97.7	56.6	96.7	40.4	-1.7	98.76%	PASS
0.0329	4.8780	2 (80 PPB O ₃)	79.7	200).1	196.8	117.1	196.7	79.8	0.1	100.1%	PASS
0.0657	4.8510	3 (160 PPB O ₃)	157.7	399	.3	395.2	237.5	396.3	158.6	0.6	99.9%	PASS
			(Ozone Audit	- TAPI T4	00 O ₃ Analyzer F	Range = 0 - 500	PPB O ₃ ; Unit Seria	al Number: 598	6		
		Audit P	oint	Uncorrect (PPB		Corrected Conc. (PPB O ₃)	O₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	Т700	
evel III Slope	Level III Int.	Zero)	0.0	0	-0.1584	0.69	N/A	N/A	Slope	Slope	
1.0130	-0.1584	1		59.	90	60.5203	61.54	1.7	PASS	1.01	0.9870	
		2		99.	90	101.0403	101.66	0.6	PASS	Offset	Offset	
		3		199	.20	201.6312	200.16	-0.7	PASS	-0.60	0.4000	
		4		299	.60	303.3364	300.70	-0.9	PASS			
		5		399	.60	404.6364	399.16	-1.4	PASS			
		Linear Reg	gression						T2(00 Diagnostics		
	NO	NO _x	(NO ₂ (GPT)	O ₃	T200 NO Slope	T200 NOx Slope	Box Temp (degC)	Rcell Temp (degC)	Moly Conv Temp (degC)	PMT Tem deg(C)
Slope	0.990	0.99	0	1.0	14	0.984	0.947	0.944	31.3	50	314.3	6.8
Intercept	-0.933	-1.11	5	-1.1	50	1.700	T200 NO Offset	T200 NOx Offset	Sample Flow (CC/M)	O3 Flow (CC/M)	Rcell Press (inHg)	Sample Pre (inHg)
Correlation	1.0000	1.000	0	1.00	000	1.0000	-0.70	-0.50	512.00	81.00	3.30	23.30
Avg % diff.	-2.52	-2.49)	-0.3	31	-0.13						
	Percent				NOX	Oxides of Nitrog	jen		T400 Diag.	T700 Diag.		
	Teledyne Advanced	Pollution Instrun	nentation		N/A	Not Applicable		Box Temp	27.7	30.3		
vg /	verage orig. Original		Original	Sample Temp 36.4 40.2								

ΤΑΡΙ	Teledyne Advanced Pollution Instrumentation	N/A
Avg	Average	orig.
Conc.	Concentration	O3
diff.	Difference	PPB
GPT	Gas Phase Titration	slpm
NO	Nitrogen Oxide	rem.
NO2	Nitrogen Dioxide	

Original Ozone Parts Per Billion Standard liters per minute Remaining

	1400 Diay.	
Box Temp	27.7	
Sample Temp	36.4	
Ph. Lamp Temp	58	
Ozone Gen Lamp	N/A	
Sample Flow	665.3	
Photo Flow	N/A	
Sample Press	22.3	
Photo Press	N/A	
O3 Ref	4450.7	

I 700 Diag.
30.3
40.2
58
48
N/A
0.698
N/A
24
3863.6

TABLE A1-7 MISSILE SITE PARK GAS Q2 AS LEFT REPORT

AUDIT DATE: 4/18/24 SITE: MISSILE SITE PARK, WELD COUNTY, CO AUDITED BY: JAKE ZARAGOZA/ABE DEARDEN/ADAM CHRISTMAN, RAMBOLL

								BRATOR SERIAL R SERIAL NUMBE);		
				NO Audit	- TAPI T20	0 NO _x Analyzer	Range = 0 - 500) PPB NO _x /Serial I	Number: 6727			
Ouput Flow (slpm)		_ Audit Point		NO Audit Conc.	NOx Audit Conc.	NO (PPB)	NO % diff.	NO _X (PPB)	NO _x % diff.	NO ₂ (PPB)	NO₂ % diff.	NO _x Pass/Fail
Audit Gas	Dilution			(PPB)	(PPB) (PPB)		76 UIII.		76 um.		76 uni.	r ass/r an
0.0000	5.0140	Zero		0.0	0.0	0.6	N/A	0.8	N/A	0.4	N/A	N/A
0.0083	5.1020	2		50.3	50.4	49.4	-1.7	50.1	-0.6	0.7	N/A	PASS
0.0329	4.9860	3		200.1	200.8	198.4	-0.8	199.2	-0.8	1.0	N/A	PASS
0.0494	4.9680	4		300.0	301.0	298.3	-0.6	299.6	-0.5	1.0	N/A	PASS
0.0657	4.9540	5		399.1	400.4	399.7	0.2	401.1	0.2	1.6	N/A	PASS
			NO ₂ Audi	t (Gas Phas	e Titratior) -TAPI T200 NC	D _x Analyzer Ran	ge = 0 - 500 PPB	NO _x /Serial Num	ber: 6727		
Ouput Audit Gas	Ouput Flow (slpm) Audit Gas Dilution		Audit Point Conc. (PPB)		Audit Conc. (PPB) NO Orig		NO rem. (PPB)	NO _X (PPB)	NO ₂ (PPB)	NO₂ % diff.	Molybdenum Converter Efficiency (%) >96% = PASS	NO ₂ Pass/Fail
0.0000	5.0140	Zero	0.0	0.	0	N/A	0.6	0.8	0.4	N/A		N/A
0.0000	0.0140	1 (40 PPB O ₃)	40.3	200		198.4	158.1	199.5	41.8	3.7	100.2%	PASS
0.0493	4.8680	2 (80 PPB O ₃)	79.9	300		298.3	218.4	300.7	82.4	3.1	100.4%	PASS
0.0657	4.8510	3 (160 PPB O ₃) 163.6		399.2		399.7	236.1	400.1	163.9	0.2	99.7%	PASS
				Dzone Audit	t- TAPI T4	00 O ₃ Analyzer F	Range = 0 - 500	PPB O ₃ ; Unit Seria	al Number: 598	6		
		Audit Po	Audit Point		Uncorrected Conc. (PPB O ₃)		O ₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	Т700	
Level III Slope	Level III Int.	Zero		0.0)0	0.1645	0.66	N/A	N/A	Slope	Slope	1
1.0121	0.1645	1	1		49.80		51.82	2.5	PASS	1.01	0.9870	
		2		99.	70	101.07087	101.41	0.3	PASS	Offset	Offset	
		3		200	.00	202.5845	202.74	0.1	PASS	-0.60	0.4000	
		4		300	.50	304.30055	304.33	0.0	PASS			
		5		400	.20	405.20692	403.19	-0.5	PASS			
				T200 Diagnostics								
	NO	NO _X		NO ₂ (GPT)	O ₃	T200 NO Slope	T200 NOx Slope	Box Temp (degC)	Rcell Temp (degC)	Moly Conv Temp (degC)	PMT Temp deg(C)
Slope	0.999	0.999	0.999		0.998		0.947	0.944	33.6	50	314.3	6.8
Intercept	-0.465	-0.127		1.279		1.095	T200 NO Offset	T200 NOx Offset	Sample Flow (CC/M)	O3 Flow (CC/M)	Rcell Press (inHg)	Sample Press (inHg)
Correlation	1.0000	1.000	1.0000 0.9999		999	1.0000	-0.70	-0.50	527.00	81.00	3.40	23.70
Avg % diff.	-0.74	-0.43	-0.43		33	0.48				•		
lotes: %	Percent				NOX N/A	Oxides of Nitrog Not Applicable	len	Box Temp	T400 Diag.	T700 Diag.		
Avg	Teledyne Advanced Pollution Instrumentation Average Concentration				orig. O3	Original Ozone		Sample Temp Ph. Lamp Temp		N/A		

Avg Conc. Average Concentration Difference

Nitrogen Oxide

Nitrogen Dioxide

diff. GPT Gas Phase Titration Original Ozone Parts Per Billion Standard liters per minute Remaining

PPB

slpm

rem.

Sample Temp Ph. Lamp Temp Ozone Gen Lamp N/A Sample Flow Photo Flow N/A Sample Press Photo Press N/A O3 Ref

NO

NO2

N/A						
N/A						
N/A						
			TABLE A1-8			
---------------------------------	--	---	---	---	---	--
RAMBOLL		QUALITY ASSURAN	ICE CALIBRATION R	ESULTS-AS FOUND		
	WE			IISSILE SITE PARK S	TE	
		Δ	UDIT DATE: 4/17/202	24		
			ED BY: Adam Christn			
		HIGH FLOW N	MASS FLOW CONTR	OLLER AUDIT		
	SENSOR MODEL:	Hastings HFC-212				
	SENSOR SERIAL #:	•				
	DIT DEVICE MODEL:					
	IT DEVICE SERIAL #: DEVICE EXPIRATION:					
		1/0/2020				
			SENSOR		ACCEPTANCE	ACCEPTANCE
	AUDIT METHOD	AUDIT VALUE	RESPONSE	DIFFERENCE (%)	CRITERIA	CRITERIA
				0/	0/	N//A
	DRV 0	Ref. Flow (SLPM) 0.001	Inst. Flow (SLPM) 0.000	% N/A	<u>%</u> 1.00	N/A N/A
START TIME	250	0.539	0.539	0.00%	1.00	YES
16:27	500	1.073	1.078	0.47%	1.00	YES
	750	1.602	1.611	0.56%	1.00	YES
	1000	2.133	2.149	0.75%	1.00	YES
	1250	2.671	2.686	0.56%	1.00	YES
	1500	3.205	3.218	0.41%	1.00	YES
	1750	3.735	3.755	0.54%	1.00	YES
	2000	4.270	4.298	0.66%	1.00	YES
	2250	4.803	4.842	0.81%	1.00	YES
	2500 2750	5.328 5.857	5.360 5.907	0.60% 0.85%	<u> </u>	YES YES
	3000	6.390	6.440	0.78%	1.00	YES
	3250	6.915	6.970	0.80%	1.00	YES
	3500	7.447	7.505	0.78%	1.00	YES
	3750	7.986	8.030	0.55%	1.00	YES
	4000	8.515	8.570	0.65%	1.00	YES
	4250	9.055	9.110	0.61%	1.00	YES
	-1200		••		1.00	
	4500	9.602	9.635	0.34%	1.00	YES
	4500 4750	9.602 10.139	9.635 10.154	0.34% 0.15%	1.00 1.00	YES YES
END TIME 17:10	4500	9.602 10.139 10.681	9.635 10.154 10.690	0.34% 0.15% 0.08%	1.00	YES
	4500 4750 5000	9.602 10.139 10.681 LOW FLOW N	9.635 10.154	0.34% 0.15% 0.08%	1.00 1.00	YES YES
17:10	4500 4750 5000 SENSOR MODEL:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212	9.635 10.154 10.690	0.34% 0.15% 0.08%	1.00 1.00	YES YES
17:10	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.15% 0.08%	1.00 1.00	YES YES
17:10 	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.15% 0.08%	1.00 1.00	YES YES
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.15% 0.08%	1.00 1.00	YES YES
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.15% 0.08%	1.00 1.00	YES YES YES
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.15% 0.08%	1.00 1.00	YES YES YES
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTR(S-200SCCM-D	0.34% 0.15% 0.08%	1.00 1.00 1.00	YES YES
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%)	1.00 1.00 1.00 ACCEPTANCE CRITERIA	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA
17:10 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM)	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM)	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) %	1.00 1.00 1.00 ACCEPTANCE CRITERIA %	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.600	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A NO
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.600 11.100	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.48%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A N/A NO YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.48% 0.36%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.48% 0.36% 0.29%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHI ACCEPTANCE CRITERIA N/A N/A N/A N/A NO YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.09%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.36% 0.29% 0.09% 0.23%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.29% 0.09% 0.23% -0.05%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A N/A NO YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000 2250	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200	0.34% 0.15% 0.08% OLLER AUDIT OLLER AUDIT % N/A 1.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.09% 0.23% -0.05% 0.08%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHI ACCEPTANCE CRITERIA N/A N/A N/A N/A NO YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000 2250 2500	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 49.200 54.500	0.34% 0.15% 0.08% OLLER AUDIT M/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.29% 0.09% 0.23% -0.05% 0.08% 0.11%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1000 1250 1500 1750 2000 2250 2500 2750	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200 54.500 60.000	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.09% 0.23% -0.05% 0.08% 0.011% 0.42%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000 2250 2500	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750 64.980	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 49.200 54.500	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.36% 0.29% 0.36% 0.29% 0.09% 0.23% -0.05% 0.08% 0.11% 0.42% 0.03%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2250 2500 2750 3000	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200 54.500 60.000 65.000	0.34% 0.15% 0.08% OLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.09% 0.23% -0.05% 0.08% 0.011% 0.42%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1250 1500 1750 2000 2250 2500 2250 2500 2250 2500 2250 2500 2250	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750 64.980 70.230	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200 54.500 60.000 65.000 70.400	0.34% 0.15% 0.08% DLLER AUDIT DIFFERENCE (%) % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.29% 0.23% -0.05% 0.09% 0.23% -0.05% 0.011% 0.42% 0.03% 0.24%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHII ACCEPTANCE CRITERIA N/A N/A N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1500 1750 2000 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750 64.980 70.230 75.450	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200 54.500 60.000 65.000 70.400 75.600	0.34% 0.15% 0.08% OLLER AUDIT OLLER AUDIT % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.09% 0.23% -0.05% 0.09% 0.23% 0.011% 0.02%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 2000 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2750 3000 3250 3500 33750 4000 4250	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750 64.980 70.230 75.450 80.660 85.870 91.120	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 27.600 33.000 27.600 33.000 38.500 43.800 49.200 54.500 60.000 65.000 70.400 75.600 81.000 86.300 91.500	0.34% 0.15% 0.08% OLLER AUDIT OLLER AUDIT % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.48% 0.36% 0.29% 0.29% 0.29% 0.09% 0.23% -0.05% 0.09% 0.23% -0.05% 0.08% 0.11% 0.42% 0.20% 0.24% 0.50% 0.42%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES
17:10 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1000 2250 2000 2250 2000 2250 2500 2750 3000 3250 3500 3750 4000	9.602 10.139 10.681 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.520 11.050 16.520 22.020 27.520 32.970 38.410 43.820 49.160 54.440 59.750 64.980 70.230 75.450 80.660 85.870	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.600 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 43.800 49.200 54.500 60.000 65.000 70.400 75.600 81.000 86.300	0.34% 0.15% 0.08% OLLER AUDIT OLLER AUDIT % N/A 1.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.45% 0.36% 0.29% 0.29% 0.09% 0.23% -0.05% 0.09% 0.23% -0.05% 0.08% 0.11% 0.42% 0.03% 0.24% 0.20% 0.20% 0.42% 0.50%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A NO YES YES YES YES YES YES YES YES YES YES

			TABLE A1-9			
RAMBOLL		QUALITY ASSURA	NCE CALIBRATION	RESULTS-AS LEFT		
	WE		ORING NETWORK: M	IISSILE SITE PARK S	ITE	
		۵	UDIT DATE: 4/17/202	24		
		AUDIT CONDUCT	ED BY: Adam Christn	nan/Jake Zaragoza		
		HIGH FLOW I	ASS FLOW CONTR	OLLER AUDIT		
	SENSOR MODEL:	Hastings HFC-212				
	SENSOR SERIAL #:	661178007				
AU	DIT DEVICE MODEL:	Alicat Scientific MB	-10SLPM-D			
AUDI	IT DEVICE SERIAL #:	471381				
	EVICE EXPIRATION:					
						VALUE WITHIN
			SENSOR		ACCEPTANCE	ACCEPTANCE
	AUDIT METHOD	AUDIT VALUE	RESPONSE	DIFFERENCE (%)	CRITERIA	CRITERIA
	DRV	Ref. Flow (SLPM)	Inst. Flow (SLPM)	%	%	N/A
	0	0.000	0.000	N/A	1.00	N/A
START TIME	250	0.538	0.539	0.19%	1.00	YES
17:13	500	1.071	1.071	0.00%	1.00	YES
	750	1.599	1.602	0.19%	1.00	YES
	<u>1000</u> 1250	2.137 2.669	2.133 2.671	-0.19% 0.07%	<u>1.00</u> 1.00	YES YES
	1500	3.194	3.193	-0.03%	1.00	YES
	1750	3.732	3.735	0.08%	1.00	YES
	2000	4.262	4.270	0.19%	1.00	YES
	2250	4.796	4.803	0.15%	1.00	YES
	2500	5.321	5.328	0.13%	1.00	YES
	2750 3000	5.855 6.395	5.857 6.390	0.03% -0.08%	<u>1.00</u> 1.00	YES YES
	3250	6.932	6.915	-0.25%	1.00	YES
	3500	7.464	7.447	-0.23%	1.00	YES
	3750	7.996	7.986	-0.13%	1.00	YES
	4000	8.529	8.515	-0.16%	1.00	YES
	4250					
	4250	9.063	9.055	-0.09%	1.00	YES
	4500	9.602	9.635	0.34%	1.00	YES
END TIME 17:53	4500 4750	9.602 10.125	9.635 10.154	0.34% 0.29%	1.00 1.00	YES YES
END TIME 17:53	4500	9.602 10.125 10.652	9.635	0.34% 0.29% 0.36%	1.00	YES
	4500 4750 5000	9.602 10.125 10.652 LOW FLOW M	9.635 10.154 10.690	0.34% 0.29% 0.36%	1.00 1.00	YES YES
17:53	4500 4750	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212	9.635 10.154 10.690	0.34% 0.29% 0.36%	1.00 1.00	YES YES
17:53 	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.29% 0.36%	1.00 1.00	YES YES
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.29% 0.36%	1.00 1.00	YES YES
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTRO	0.34% 0.29% 0.36%	1.00 1.00	YES YES YES
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTR(S-200SCCM-D	0.34% 0.29% 0.36%	1.00 1.00 1.00	YES YES YES
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR	0.34% 0.29% 0.36% OLLER AUDIT	1.00 1.00 1.00 ACCEPTANCE	YES YES YES VALUE WITHIN ACCEPTANCE
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #:	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382	9.635 10.154 10.690 MASS FLOW CONTR(S-200SCCM-D	0.34% 0.29% 0.36%	1.00 1.00 1.00	YES YES
17:53 AU AUDI	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM)	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM)	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) %	1.00 1.00 1.00 ACCEPTANCE CRITERIA %	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: DEVICE EXPIRATION: AUDIT METHOD DRV 0	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.500	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.500 11.100	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45%	1.00 1.00 1.00 4.00 CRITERIA % 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D SENSOR RESPONSE Inst. Flow (SCCM) 0.000 5.500 11.100 16.600	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11% 0.06%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 38.500	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11% 0.06% 0.26%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 38.500 43.800	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11% 0.06% 0.26% 0.05%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 38.500	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11% 0.06% 0.26%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 2000 2250	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.11% 0.06% 0.26% 0.26% 0.05% 0.20%	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 49.200 54.500	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.12% -0.09% 0.11% 0.06% 0.26% 0.26% 0.26% 0.20% 0.24% 0.05% 0.20%	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1250 1500 1750 2000 2250 2500 2250 2500 2250 2500 2250 2500 2250	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 38.500 43.800 49.200 54.500 59.700 65.000 70.400	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.12% -0.09% 0.11% 0.06% 0.26% 0.26% 0.26% 0.26% 0.20% 0.24% 0.05% 0.20% 0.20% 0.20%	1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 1500 1750 1000 1250 2000 2250 2500 250 25	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100 75.330	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000 33.000 33.500 43.800 49.200 54.500 59.700 65.000 70.400 75.600	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.12% -0.09% 0.11% 0.06% 0.26% 0.26% 0.26% 0.26% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1500 1750 2000 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2250 2500 2750 3000 3250 3500 3750	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100 75.330 80.560	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000 33.000 33.500 43.800 49.200 54.500 59.700 65.000 70.400 75.600 80.600	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% -0.09% 0.12% -0.09% 0.12% 0.12% 0.12% 0.12% 0.12% 0.05% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.36% 0.36% 0.36%	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 2750 3000 3250 33500 3750 4000	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100 75.330 80.560 85.830	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 43.800 49.200 54.500 59.700 65.000 70.400 75.600 80.600 85.900	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% 0.45% 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.26% 0.26% 0.26% 0.26% 0.26% 0.26% 0.20% 0.00% 0.20% 0.00% 0.00% 0.00% 0.20% 0.00%0.00% 0.	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: EVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 2000 2250 2500 250 25	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100 75.330 80.560 85.830 91.050	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 27.600 33.000 27.600 33.000 38.500 43.800 43.800 49.200 54.500 59.700 65.000 70.400 75.600 80.600 80.600 85.900 91.500	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% 0.45% 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.26% 0.26% 0.26% 0.26% 0.26% 0.20% 0	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES
17:53 AUI AUDI AUDIT D	4500 4750 5000 SENSOR MODEL: SENSOR SERIAL #: DIT DEVICE MODEL: IT DEVICE SERIAL #: PEVICE EXPIRATION: AUDIT METHOD DRV 0 250 500 750 1000 1250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 2750 3000 3250 33500 3750 4000	9.602 10.125 10.652 LOW FLOW M Hastings HFC-212 763637014 Alicat Scientific MB 471382 1/8/2025 AUDIT VALUE Ref. Flow (SCCM) 0.000 5.460 11.050 16.580 22.120 27.570 32.980 38.400 43.780 49.100 54.370 59.670 64.870 70.100 75.330 80.560 85.830	9.635 10.154 10.690 MASS FLOW CONTRO S-200SCCM-D S-200SCCM-D S-200SCCM-D Inst. Flow (SCCM) 0.000 5.500 11.100 16.600 22.100 22.100 27.600 33.000 38.500 43.800 43.800 49.200 54.500 59.700 65.000 70.400 75.600 80.600 85.900	0.34% 0.29% 0.36% OLLER AUDIT DIFFERENCE (%) % N/A 0.73% 0.45% 0.12% 0.45% 0.12% 0.12% 0.12% 0.12% 0.12% 0.12% 0.26% 0.26% 0.26% 0.26% 0.26% 0.26% 0.20% 0.00% 0.20% 0.00% 0.00% 0.00% 0.20% 0.00%0.00% 0.	1.00 1.00 1.00 1.00 ACCEPTANCE CRITERIA % 1.00	YES YES YES VALUE WITHIN ACCEPTANCE CRITERIA N/A N/A YES YES YES YES YES YES YES YES YES YES

APPENDIX A2: HEREFORD CALIBRATION AND AUDIT RESULTS

RAMBOLI			TABLE A2-1			
			ICE CALIBRATION RE			
				C HEREFORD SITE	1	
			AUDIT DATE: 6/21/24			
			ED BY: Jake Zaragoza			
		10-METER HORIZO	ONTAL WIND SPEED	DIRECTION AUDIT		
	SENSOR MODEL:	RM Young 05305V				
	SENSOR SERIAL #:	180187				
AUE	DIT DEVICE MODEL:	RM Young 18802				
AUDIT	DEVICE SERIAL #:	CA5458				
AUDIT DE	VICE EXPIRATION:	10/26/2024				
PARAMETER	AUDIT METHOD	AUDIT VALUE	SENSOR RESPONSE	DIFFERENCE (M/S)	ACCEPTANCE CRITERIA	VALUE WITHIN ACCEPTANCE CRITERIA
HORIZONTAL						
WIND SPEED	DC MOTOR RPM	M/S	M/S	M/S	M/S	N/A
	0	0.000	-0.007	0.01	0.20	YES
	200	1.024	0.950	0.07	0.20	YES
	400	2.048	2.060	-0.01	0.20	YES
	600 800	3.072 4.096	3.050 4.040	0.02	0.20	YES YES
	1000	5.120	5.090	0.03	0.20	YES
	2000	10.240	10.210	0.03	0.20	YES
	3000	15.360	15.320	0.04	0.20	YES
	4000	20.480	20.450	0.03	0.20	YES
	5000	25.600	25.580	0.02	0.20	YES
		TORQUE	CW =	0.1	<u><</u> 0.3 gm-cm	YES
		VERIFICATION	CCW =	0.1	<u><</u> 0.3 gm-cm	YES
WIND	ALIGNMENT GAUGE	0 30	3.29	3.29	5	YES YES
DIRECTION	GAUGE		32.80 62.20	<u>2.80</u> 2.20	5	YES
		90	89.60	0.40	5	YES
		120	117.30	2.70	5	YES
		150	146.60	3.40	5	YES
		180	176.20	3.80	5	YES
		210	206.70	3.30	5	YES
		240	237.90	2.10	5	YES
		270 300	269.00 300.60	<u>1.00</u> 0.60	<u> </u>	YES YES
		330	333.50	3.50	5	YES
		360	363.20	3.20	5	YES
		TORQUE	QUAD.#1 =	7	<u><</u> 9.0 gm-cm	YES
		VERIFICATION	QUAD.#2 =	7	<u><</u> 9.0 gm-cm	YES
					N=	357.4
0	MAG DEC:	7.37		4 QUAD VANE	E=	88.2
° E CROSS ARM	AS FOUND:	-1 +/- 5° (PASSED)		ALIGNMENT:	S= W=	176.6 267.8
ALIGNMENT: WIND	TRANSIT		AUDIT =	-1	¥¥—	207.8
DIRECTION	ALIGNMENT		SENSOR =	-1	5.0 degrees	YES
KEY:			NOTES: No changes			-
HWS	Horizontal wind spe	eed				
VWS	Vertical wind speed					
WD	Wind direction					
M/S	Meters per second					
N/A MAG. DEC.	Not applicable Magnetic Declination	'n				
CW	Clockwise	/11				
ccw	Counter Clockwise					

RAMBOLI									
RAMBOLI				TAB	LE A2-2				
			QUALITY AS	SSURANCE		TION RESULTS			
		WELD	COUNTY N	IONITORIN	G NETWO	RK: HEREFORD	SITE		
					ATE: 6/21/2				
		AUD				za/Adam Christi	nan		
			TEMPERA	TURE/DEL	TA TEMER	ATURE AUDIT			
		RM YOUNG							
		032950 (2M)	•	M)					
		Omega HH4							
			5						
AUDIT DEVICE EX		11/21/2024 2-M	2-M VS.	10-M	10 M VS	ACCEPTANCE			VALUE
WATER DATH	AUDIT	2-141	2-141 43.	10-141	10-101 0 3.	ACCEPTANCE	DELIAT.	ACCEPTANCE	VALUE
	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	N/A
ICE BATH	0.20	0.29	0.09	0.33	0.13	0.50	0.04	0.1	YES
AMBIENT BATH	18.94	18.93	-0.02	18.99	0.05	0.50	0.07	0.1	YES
HOT BATH	47.59	47.66	0.07	47.63	0.04	0.50	-0.03	0.1	YES
		,							
NOTES: Cleaned a	spirator hou	ising units.							

RAMBOLL

RAMBOLL		TABLE	A2-3						
0									
QUALITY ASSURANCE CALIBRATION RESULTS WELD COUNTY MONITORING NETWORK: HEREFORD SITE									
		AUDIT DAT							
AUDIT				/Adam Christman					
			-						
SENSOR MODEL: EE181									
SENSOR SERIAL #: 2015160012638	F								
AUDIT DEVICE MODEL: EE181									
AUDIT DEVICE SERIAL #: 214116001537C	:1								
AUDIT DEVICE EXPIRATION: 3/21/2025									
						VALUE			
		AUDIT	2-M		ACCEPTANCE	WITHIN			
		SENSOR	SENSOR	ABSOLUTE %	CRITERIA	ACCEPTANCE			
RELATIVE HUMIDITY		VALUE	VALUE	RH DIFF.	(+/-)	CRITERIA			
	UNITS	% RH	% RH	% RH	PERCENT	N/A			
AVERAGE	:	66.53	70.86	4.33	7.0	YES			
		64.88	68.44	3.56	7.0	YES			
		62.36	65.8	3.44	7.0	YES			
		64.59	68.37	3.78					
NOTES:									

		BARO	METRIC PR	ESSURE A	UDIT		
SENSOR MODEL:	Setra 278						
SENSOR SERIAL #:	7573233						
AUDIT DEVICE MODEL:	BVC10						
AUDIT DEVICE SERIAL #:	2972						
AUDIT DEVICE EXPIRATION:	11/24/2024						
							VALUE
			AUDIT	2-M		ACCEPTANCE	WITHIN
			SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE
BAROMETRIC PRESSURE			VALUE	VALUE	DIFF.	(+/-)	CRITERIA
		UNITS	mm Hg	mm Hg	mm Hg	mm Hg	N/A
	AVERAGE:		629.21	629.16	-0.05	2.25	YES
NOTES:							

	P	RECIPITAT				
SENSOR MODEL: RM	Young Heated Rain Gau	ge Model 5	52202			
SENSOR SERIAL: TB1	6139					
AUDIT DEVICE MODEL: Drip	Bottle					
AUDIT DEVICE SERIAL #: N/A						
		AUDIT S	2-M	PERCENT	ACCEPTANCE	VALUE
PRECIPITATION	VALUE	SENSOR	DIFF.	CRITERIA	WITHIN	
As Found						
300 ML WATER = 150 TIPS/0.591"	UNITS	Inches	Inches	PERCENT	PERCENT	N/A
Volume 1000		1.968505	1.883	-4.3%	10	YES
As Left						
300 ML WATER = 150 TIPS/0.591"	UNITS	Inches	Inches	PERCENT	PERCENT	N/A
Volume 500		0.984253	0.981	-0.3%	10	YES

NOTES: Cleared weeds and grasses around precip concrete pad. Adjusted tippers up 1/2 turn each. Cleaned tippers and surrounds of spider debris and dirt.

PANEL TEMPERATURE AUDIT									
SENSOR MODEL: Campbell Scientific CR300	0								
SENSOR SERIAL #: 13408									
AUDIT DEVICE MODEL: Omega HH42A									
AUDIT DEVICE SERIAL #: 23KMM02815									
AUDIT DEVICE EXPIRATION: 11/21/2024									
					VALUE				
	AUDIT	2-M		ACCEPTANCE	WITHIN				
	SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE				
	VALUE	VALUE	DIFF.	(+/-)	CRITERIA				
UNITS	DEG. C	DEG. C	DEG. C	ABS. DIFF	N/A				
INSTANTANEOUS READING:	26.19	26.06	0.13	2.1	YES				
NOTES:									

RAMBOLL	Table A2-4								
	Solar Radiation Audit Data								
Audit Date: 6/21/2024									
Site Sensor: Hukseflux LP02; Serial # 48015									
Audit Sensor: ; Serial #									
Audit Sensor Expiration:	11/16/2024								
Timestamp	Audit Sensor (w/m2)	Site Sensor (w/m2)							
1030	965	938							
1045	987	959							
1100	1003	974							
1115	1008	980							
1130	1023	993							
1145	975								
AVG	999.3	969.8							
	% DIFF=	2.95%							
NOTES:									

TABLE A2-5HEREFORD GAS Q2 AS FOUND REPORT

AUDIT DATE: 4/07/2024 SITE: HEREFORD, WELD COUNTY, CO AUDITED BY: JAKE ZARAGOZA

AUDIT DEVICE: TELEDYNE API T703 OZONE CALIBRATOR SERIAL NUMBER: 825

Ozone Audit- TAPI T400 O₃ Analyzer Range = 0 - 500 PPB O₃; Unit Serial Number: 5984

		Audit Point	Uncorrected Conc. (PPB O ₃)	Corrected Conc. (PPB O ₃)	O ₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	T700
Level III Slope	Level III Int.	Zero	0.00	-0.1997	0.79	N/A	N/A	Slope	Slope
1.0025	-0.1997	1	60.70	60.65205	60.29	-0.6	PASS	0.99	0.98
		2	100.30	100.35105	99.90	-0.4	PASS	Offset	Offset
		3	200.20	200.5008	199.48	-0.5	PASS	-3.10	-0.41
		4	300.10	300.65055	298.47	-0.7	PASS		
		5	400.30	401.10105	397.50	-0.9	PASS		

Linear Regression

	O ₃	T400	Box Temp (degC)	Sample Temp (degC)	Photo Lamp Temp (degC)	Sample Flow (CC/M)	Sample Press (inHg)	Ozone Ref (mV)	
Slope	0.990		23.3	32.5	58	616.8	21.9	4402.5	
Intercept	0.713	T700	Box Temp (degC)	Sample Temp (degC)	Ozone Gen Lamp (degC)	Photo Flow (LPM)	Photo Press (inHg)	Ozone Ref (mV)	Output Flow (LPM)
Correlation	1.0000		26.00	34.60	48.00	0.66	23.60	3700.50	4.12
Avg % diff.	-0.64				-			-	

Notes:

%	Percent	rem.	Remaining
API	Advanced Pollution Instrumentation	N/A	Not Applicable
Avg	Average	orig.	Original
Conc.	Concentration	O3	Ozone
diff.	Difference	PPB	Parts Per Billion

TABLE A2-6 HEREFORD GAS Q2 AS LEFT REPORT

AUDIT DATE: 04/18/2024 SITE: HEREFORD, WELD COUNTY, CO AUDITED BY: JAKE/ABE, RAMBOLL

AUDIT DEVICE: TELEDYNE API T703 OZONE CALIBRATOR SERIAL NUMBER: 825

Ozone Audit- TAPI T400 O₃ Analyzer Range = 0 - 500 PPB O₃; Unit Serial Number: 5984

	Audit Point		ted Conc. 3 O ₃)	Corrected Conc. (PPB O ₃)	O ₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	T700			
Level III Slope	Level III Int.	Zer	Zero		00	-0.3105	0.89	N/A	N/A	Slope	Slope	
1.0013	-0.3105	1	1 50.40		.40	50.15502	52.50	4.7	PASS	0.99	0.98	
		2		100	0.00	99.8195	102.83	3.0	PASS	Offset	Offset	
		3		199	9.80	199.74924	203.057	1.7	PASS	-3.10	-0.41	
		4		300	0.00	300.0795	303.44	1.1	PASS			
		5		400.20		400.40976	402.22	0.5	PASS			
Linear Regress	ion											
	O ₃	T400	Box Temp (degC)	Sample Temp (degC)	Photo Lamp Temp (degC)	Sample Flow (CC/M)	Sample Press (inHg)	Ozone Ref (mV)				
Slope	1.002		23.9	32.8	58	632.9	22.5	4372.4				
Intercept	2.240	T700	Box Temp (degC)	Sample Temp (degC)	Ozone Gen Lamp (degC)	Photo Flow (LPM)	Photo Press (inHg)	Ozone Ref (mV)	Output Flow (LPM)			
Correlation	1.0000		25.0	35.1	47.9	0.684	24.8	3697.2	4.983			
Avg % diff.	2.18											

Notes:

%	Percent
API	Advanced Pollution Instrumentation
Avg	Average
Conc.	Concentration
diff.	Difference

Remaining

Not Applicable

Original

rem.

N/A

orig. O3

PPB

Ozone

Parts Per Billion

APPENDIX A3: ORCHARD CALIBRATION AND AUDIT RESULTS

RAMBOLI			TABLE A3-1			
			_			
		-				
			AUDIT DATE: 6/25/24			
			ED BY: Jake Zaragoza			
			ONTAL WIND SPEED	DIRECTION AUDIT		
	SENSOR MODEL:	RM YOUNG 05305	/			
	SENSOR SERIAL #:	180186				
AUE	DIT DEVICE MODEL:	RM Young 18802				
-	DEVICE SERIAL #:					
AUDIT DE	VICE EXPIRATION:	10/26/2024				VALUE WITHIN
PARAMETER	AUDIT METHOD	AUDIT VALUE	SENSOR RESPONSE	DIFFERENCE (M/S)	ACCEPTANCE CRITERIA	ACCEPTANCE CRITERIA
HORIZONTAL						
WIND SPEED	DC MOTOR RPM	M/S	M/S	M/S	M/S	N/A
	0 200	0.000 1.024	-0.002 0.955	0.00	0.20	YES YES
	400	2.048	2.040	0.07	0.20	YES
	600	3.072	3.056	0.02	0.20	YES
	800	4.096	4.043	0.05	0.20	YES
	1000	5.120	5.040	0.08	0.20	YES
	2000	10.240	10.130	0.11	0.20	YES YES
	3000 4000	15.360 20.480	15.210 20.290	0.15 0.19	0.20	YES
	5000	25.600	25.380	0.22	0.20	NO
		TORQUE	CW =	0.1	<u>< 0.3 gm-cm</u>	YES
		VERIFICATION	CCW =	0.1	<u><</u> 0.3 gm-cm	YES
WIND	ALIGNMENT	0	-0.55	0.55	5	YES
DIRECTION	GAUGE	30	28.64	1.36	5	YES
		60 90	58.17 88.33	<u>1.83</u> 1.67	<u> </u>	YES YES
		120	118.08	1.92	5	YES
		150	148.36	1.64	5	YES
		180	178.12	1.88	5	YES
		210	208.76	1.24	5	YES
		240 270	237.07 268.69	2.93 1.31	5 5	YES YES
		300	298.05	1.95	5	YES
		330	329.72	0.28	5	YES
		360	359.99	0.01	5	YES
		TORQUE	QUAD.#1 =	7	<u>< 9.0 gm-cm</u>	YES
		VERIFICATION	QUAD.#2 =	7	<u>< 9.0 gm-cm</u> N=	YES -1.34
	MAG DEC:	7.23		4 QUAD VANE	N= E=	-1.34 90.14
⁰ E CROSS ARM	AS FOUND:	0		ALIGNMENT:	S=	180.13
ALIGNMENT:		H- 5° (PASSED)			W=	267.6
WIND	TRANSIT		AUDIT =	0		YES
DIRECTION	ALIGNMENT		SENSOR =	0	5.0 degrees	YES
<u>(EY:</u> IWS	Horizontal wind spe	ad	NOTES:			
/WS	Vertical wind speed					
VD	Wind direction	-				
//S	Meters per second					
N/A	Not applicable					
MAG. DEC. CW	Magnetic Declination	on				
	Counter Clockwise					

RAMBOLI	3		TABLE A3-2			
		QUALITY ASSURA	NCE CALIBRATION F	RESULTS-AS LEFT		
		WELD COUNTY MO	DNITORING NETWOR	K: ORCHARD SITE		
			AUDIT DATE: 6/25/24	L .		
		AUDIT CONDUCTI	ED BY: Jake Zaragoz	a/Adam Christman		
			ONTAL WIND SPEED			
	SENSOR MODEL:	RM YOUNG 05305	1			
	SENSOR SERIAL #:	180186				
	DIT DEVICE MODEL:					
	DEVICE SERIAL #:	•				
-	EVICE EXPIRATION:					
			051005			VALUE WITHIN
PARAMETER	AUDIT METHOD	AUDIT VALUE	SENSOR RESPONSE		ACCEPTANCE CRITERIA	ACCEPTANCE
			RESPONSE	(M/S)	CRITERIA	CRITERIA
HORIZONTAL						
WIND SPEED	DC MOTOR RPM	M/S	M/S	M/S	M/S	N/A
	0 200	0.000	0.005	0.00 0.03	0.20	YES YES
	400	2.048	2.060	-0.01	0.20	YES
	600	3.072	3.050	0.02	0.20	YES
	800	4.096	4.060	0.04	0.20	YES
	1000	5.120	5.080	0.04	0.20	YES
	2000	10.240	10.220	0.02	0.20	YES
	3000	15.360	15.320	0.04	0.20	YES
	4000	20.480	20.430	0.05	0.20	YES
	5000	25.600	25.560	0.04	0.20	YES
		TORQUE VERIFICATION	CW = CCW =	0.1 0.1	<u><</u> 0.3 gm-cm <u><</u> 0.3 gm-cm	YES YES
WIND	ALIGNMENT		-0.80	0.80	<u> </u>	YES
DIRECTION	GAUGE	30	28.96	1.04	5	YES
		60	58.00	2.00	5	YES
		90	88.70	1.30	5	YES
		120	117.70	2.30	5	YES
		150	148.02	1.98	5	YES
		180	177.77	2.23	5	YES
		210	207.94 237.35	2.06	5	YES
		240 270	237.35	2.65 2.87	5 5	YES YES
		300	297.17	2.83	5	YES
		330	328.70	1.30	5	YES
		360	358.78	1.22	5	YES
	•	TORQUE	QUAD.#1 =	7	<u>< 9.0 gm-cm</u>	YES
		VERIFICATION	QUAD.#2 =	7	<u><</u> 9.0 gm-cm	YES
			Ι Τ		N=	-1.34
0 F 0 F 0 F 0 F 0 F F F	MAG DEC:	7.23		4 QUAD VANE	E=	90.14
	AS FOUND: TOLERANCE: +	0 -/- 5° (PASSED)		ALIGNMENT:	S= W=	180.13 267.6
ALIGNMENT: WIND	TRANSIT		I AUDIT =	0	¥¥ —	YES
DIRECTION	ALIGNMENT		SENSOR =	0	5.0 degrees	YES
KEY:	=		NOTES: WS bearing	is replaced. Increas		
HWS	Horizontal wind spe	ed	by 0.744% (the average		•• •	-
VWS	Vertical wind speed		the audit target valu	•		•
WD	Wind direction		was reloaded to sys	•		-
M/S	Meters per second					
N/A	Not applicable	-				
MAG. DEC. CW	Magnetic Declinatio Clockwise	n				
CCW	Clockwise Counter Clockwise					

RAMBOLI									
RAMBULI				TAB	LE A3-3				
			QUALITY AS	SSURANCE	E CALIBRA	TION RESULTS			
		WEL	D COUNTY I			RK: ORCHARD	SITE		
					ATE: 6/25/2				
		AUD				za/Adam Christr	nan		
				TURE/DEL	TA TEMER	ATURE AUDIT			
		RM YOUNG							
		032953 (2M)	•	M)					
		Omega HH4							
			5						
AUDIT DEVICE EX		11/21/2024 2-M	2-M VS.	10-M	10 M VS	ACCEPTANCE		ACCEDTANCE	VALUE
	AUDIT	2-111	2-111 13.	10-141	10-141 43.	ACCEPTANCE	DELIAT.	ACCEPTANCE	VALUE
	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	DEG. C	N/A
ICE BATH	0.23	0.33	0.10	0.30	0.07	0.50	-0.03	0.1	YES
AMBIENT BATH	20.42	20.53	0.11	20.51	0.09	0.50	-0.02	0.1	YES
HOT BATH	48.57	48.54	-0.03	48.59	0.02	0.50	0.05	0.1	YES
NOTES: Cleaned b	oth aspirato	or housing u	nits.						

RAMBOLL						
		TABLE				
				ON RESULTS		
WELD CC				K: ORCHARD SITE		
AUDIT C				Adam Christman		
	REL	ATIVE HU	MIDITY AU	DIT		
SENSOR MODEL: EE181						
SENSOR SERIAL #: 201516001269F1						
AUDIT DEVICE MODEL: EE181						
AUDIT DEVICE SERIAL #: 214116001537C1						
AUDIT DEVICE EXPIRATION: 3/21/2025						
		AUDIT	2-M		ACCEPTANCE	VALUE WITHIN
				ABSOLUTE %	CRITERIA	
RELATIVE HUMIDITY		VALUE	VALUE	RH DIFF.		CRITERIA
		VALUE	VALUE		(+/-)	CRITERIA
	UNITS	% RH	% RH	% RH	PERCENT	N/A
AVERAGE:		6.84	9.9	3.06	7.0	YES
		7.27	10.34	3.07	7.0	YES
		6.85	9.85	3.00	7.0	YES
		6.87	9.71	2.84		
NOTES:						

		BARO	METRIC PR	RESSURE A	UDIT		
SENSOR MODEL:	Setra 278						
SENSOR SERIAL #:	7563445						
AUDIT DEVICE MODEL:	BVC10						
AUDIT DEVICE SERIAL #:	2972						
AUDIT DEVICE EXPIRATION:	11/24/2024						
							VALUE
			AUDIT	2-M		ACCEPTANCE	WITHIN
			SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE
BAROMETRIC PRESSURE			VALUE	VALUE	DIFF.	(+/-)	CRITERIA
		UNITS	mm Hg	mm Hg	mm Hg	mm Hg	N/A
	AVERAGE:		646.68	647.03	0.35	2.25	YES
NOTES:							

	P	RECIPITAT	ION AUDIT			
SENSOR MODEL:	RM Young Heated Rain Gau	ge Model 5	2202			
SENSOR SERIAL:	TB16138					
AUDIT DEVICE MODEL:	Drip Bottle					
AUDIT DEVICE SERIAL #:	N/A					
		AUDIT S	2-M	PERCENT	ACCEPTANCE	VALUE
PRECIPITATION		VALUE	SENSOR	DIFF.	CRITERIA	WITHIN
As Found						
300 ML WATER = 150 TIPS/0.59	1" <i>UNITS</i>	Inches	Inches	PERCENT	PERCENT	N/A
Volume 1000		1.968505	1.818	-7.6%	10	YES
As Left						
300 ML WATER = 150 TIPS/0.59	1" <i>UNITS</i>	Inches	Inches	PERCENT	PERCENT	N/A
Volume 1000		1.968505	2.065	4.9%	10	YES

NOTES: Cleaned tippers and surrounds. Heavy dirt buildup in drain cavity; drain hole had been blocked. Adjusted tipper buckets up 1/2 turn each.

PAN		RATURE AU	DIT		
SENSOR MODEL: Campbell Scientific CR300)0				
SENSOR SERIAL #: 13405					
AUDIT DEVICE MODEL: Omega HH42A					
AUDIT DEVICE SERIAL #: 23KMM02815					
AUDIT DEVICE EXPIRATION: 11/21/2024					
					VALUE
	AUDIT	2-M		ACCEPTANCE	WITHIN
	SENSOR	SENSOR	ABSOLUTE	CRITERIA	ACCEPTANCE
PANEL TEMPERATURE	VALUE	VALUE	DIFF.	(+/-)	CRITERIA
UNITS	DEG. C	DEG. C	DEG. C	ABS, DIFF	N/A
INSTANTANEOUS READING:	32.58	31.77	0.81	2.1	YES
NOTES:					

RAMBOLL	Table A3-5	
	Solar Radiation Audit Data	
Audit Date:	6/25/2024	
Site Sensor:	Hukseflux LP02; Serial # 480	14
Audit Sensor: ; Serial #		
Audit Sensor Expiration:		
Timestamp	Audit Sensor (w/m2)	Site Sensor (w/m2)
1045-1100	937	952
1100-1115	1112	1024
1115-1130	1089	1049
1130-1145	1079	1044
1145-1200	1083	1042
AVG	1060.0	1022.2
	% DIFF=	3.57%

TABLE A3-6ORCHARD GAS Q2 AS FOUND REPORT

AUDIT DATE: 4/07/2024 SITE: ORCHARD, WELD COUNTY, CO AUDITED BY: JAKE ZARAGOZA, RAMBOLL

AUDIT DEVICE: TELEDYNE API T703 OZONE CALIBRATOR SERIAL NUMBER: 824

Ozone Audit- TAPI T400 O₃ Analyzer Range = 0 - 500 PPB O₃; Unit Serial Number: 5985

		Audit Point	Uncorrected Conc. (PPB O ₃)	Corrected Conc. (PPB O ₃)	O ₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	T700
Level III Slope	Level III Int.	Zero	0.00	-0.4262	0.28	N/A	N/A	Slope	Slope
1.0026	-0.4262	1	60.80	60.53188	61.57	1.7	PASS	0.99	0.98
		2	100.60	100.43536	101.57	1.1	PASS	Offset	Offset
		3	199.70	199.79302	200.40	0.3	PASS	-0.10	-0.73
		4	300.00	300.3538	300.14	-0.1	PASS		
		5	400.30	400.91458	400.28	-0.2	PASS		

Linear Regression

	O ₃	T400	Box Temp (degC)	Sample Temp (degC)	Photo Lamp Temp (degC)	Sample Flow (CC/M)	Sample Press (inHg)	Ozone Ref (mV)	
Slope	0.996		24.7	33.2	58	708.3	22.6	3957.6	
Intercept	1.178	T700	Box Temp (degC)	Sample Temp (degC)	Ozone Gen Lamp (degC)	Photo Flow (LPM)	Photo Press (inHg)	Ozone Ref (mV)	Output Flow (LPM)
Correlation	1.0000		28.00	36.30	48.00	0.69	24.20	3526.80	3.86
Avg % diff.	0.58							-	

Notes:

%	Percent	rem.	Remaining
API	Advanced Pollution Instrumentation	N/A	Not Applicable
Avg	Average	orig.	Original
Conc.	Concentration	O3	Ozone
diff.	Difference	PPB	Parts Per Billion

TABLE A3-7 ORCHARD GAS Q2 AS LEFT REPORT

AUDIT DATE: 04/18/2024 SITE: ORCHARD, WELD COUNTY, CO AUDITED BY: JAKE/ABE, RAMBOLL

AUDIT DEVICE: TELEDYNE API T703 OZONE CALIBRATOR SERIAL NUMBER: 824

Ozone Audit- TAPI T400 O₃ Analyzer Range = 0 - 500 PPB O₃; Unit Serial Number: 5985

					U U	, ,	0,				
		Audit F	Point	Uncorrect (PPE		Corrected Conc. (PPB O ₃)	O ₃ (PPB)	O ₃ % diff.	Pass/Fail	T400	T700
Level III Slope	Level III Int.	Zero		0.	00	-0.6714	0.31	N/A	N/A	Slope	Slope
1.0026	-0.6714	1		50.	.00	49.4586	51.35	3.8	PASS	0.990	0.976
		2		100	.00	99.5886	100.47	0.9	PASS	Offset	Offset
		3		199	.80	199.64808	200.66	0.5	PASS	-0.100	-0.728
		4		300	.30	300.40938	300.13	-0.1	PASS		
		5		399	.60	399.96756	398.76	-0.3	PASS		
inear Regressi	on										
	O ₃	T400	Box Temp (degC)	Sample Temp (degC)	Photo Lamp Temp (degC)	Sample Flow (CC/M)	Sample Press (inHg)	Ozone Ref (mV)			
Slope	0.994		22.8	31.2	58.0	736.2	23.3	3939.7			
Intercept	1.657	T700	Box Temp	Sample Temp	Ozone Gen Lamp	Photo Flow (LPM)	Photo Press (inHg)	Ozone Ref (mV)	Output Flow (LPM)		
intercept			(degC)	(degC)	(degC)		(iiiig)		()		
Correlation	1.0000		(degC) 23.9	(degC) 34.9	(degC) 48.0	0.0	25.6	3529.5	4.99		

Notes:

%	Percent
API	Advanced Pollution Instrumentation
Avg	Average
Conc.	Concentration
diff.	Difference

Remaining

Not Applicable

Original

rem.

N/A

orig. O3

PPB

Ozone

Parts Per Billion

APPENDIX B: Q2 2024 INVALIDATION PERIODS AND CORRECTIVE ACTION REPORTS

APPENDIX B1: INVALIDATION PERIODS

APPENDIX B1: PERIODS OF INVALID DATA AND QUALIFIER CODES

Data is presented by Month, Station Name, Parameter, Qualifier Code, Date and Time, Explanation

Qualifier Codes:

Code	Description			
	Operational Deviation: the standard			
2	deviation of shelter temperature was			
	above 2.1°C for the previous 24 hours			
AM	Miscellaneous Void			
АК	Filter Leak			
AT	Calibration			
AV	Power Failure			
AW	Wildlife Damage			
BA	Maintenance/Routine Repairs			
BD	Auto Calibration			
BC	Multi-point Calibration			
V	Value validated			

- April
 - Missile Site Park
 - Ozone/NO/NO2/NOx
 - BD (04-01-24 02:00)
 - Overnight calibration
 - BD (04-02-24 02:00)
 - Overnight calibration
 - o BD (04-03-24 02:00)
 - Overnight calibration
 - BD (04-04-24 01:00 through 02:00)
 - Overnight calibration
 - BD (04-05-24 02:00)
 - Overnight calibration
 - BD (04-06-24 02:00)
 - Overnight calibration
 - o BD (04-07-24 01:00 through 02:00)
 - Overnight calibration
 - BC (04-07-24 10:00 through 14:00)
 - Multi-point 'as found' calibration
 - BD (04-08-24 02:00)
 - Overnight calibration
 - o V (04-08-24 07:00)
 - Value validated. Partial hour due to filter change.
 - o AM (04-08-24 08:00)

- Filter change
- o V (04-08-24 09:00)
 - Value validated. Partial hour due to maintenance testing.
- V (04-17-24 16:00)
 - Value validated. Partial hour due to maintenance testing.
- o V (04-17-24 20:00)
 - Value validated. Partial hour due to calibration testing.
- o AT (04-17-24 21:00)
 - Calibration testing
- o V (04-17-24 22:00)
 - Value validated. Partial hour due to calibration testing.
- o BD (04-18-24 01:00 through 02:00)
 - Overnight calibration
- o BA (04-18-24 07:00 through 10:00)
 - Gas analyzer maintenance
 - BC (04-18-24 11:00 through 16:00)
 - Multi-point 'as left' calibration
- o V (04-18-24 17:00)

- Value validated. Partial hour due to multi-point calibration.
- BD (04-19-24 02:00)
 - Overnight calibration
- AT (04-19-24 13:00)
 - Calibration testing
- BD (04-20-24 02:00)
 - Overnight calibration
- BD (04-21-24 01:00 through 02:00)
 - Overnight calibration
- o BD (04-22-24 02:00)
 - Overnight calibration
- BD (04-23-24 02:00)
 - Overnight calibration
- BD (04-24-24 02:00)
 - Overnight calibration
- BD (04-25-24 01:00 through 02:00)
 - Overnight calibration
- BD (04-26-24 02:00)
 - Overnight calibration
- BD (04-27-24 02:00)
 - Overnight calibration
- BD (04-28-24 01:00 through 02:00)
 - Overnight calibration
- BD (04-29-24 02:00)
 - Overnight calibration
- BD (04-30-24 02:00)

- Overnight calibration
- AM (04-30-24 12:00 through 13:00)
 - Filter change
- o Hereford
 - Ozone

Ο

- BD (04-01-24 02:00)
 - Overnight calibration
- o BD (04-03-24 02:00)
 - Overnight calibration
 - 2 (04-03-24 20:00 through 04-04-24 09:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (04-04-24 13:00 through 04-05-24 02:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (04-05-24 02:00)
 - Overnight calibration
- o 2 (04-05-24 11:00 through 16:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (04-06-24 15:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o BC (04-07-24 10:00 through 11:00)
 - Multi-point 'as found' calibration
- BD (04-08-24 02:00)
 - Overnight calibration
- AM (04-08-24 14:00)
 - Filter change
- o V (04-08-24 15:00)
 - Value validated. Partial hour due to filter change.
- 2 (04-12-24 20:00 through 04-13-24 03:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (04-13-24 19:00 through 20:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (04-14-24 03:00 through 16:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - 2 (04-14-24 22:00 through 04-15-24 03:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- 2 (04-15-24 10:00 through 04-16-24 13:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o V (04-16-24 05:00)

- Value validated. Partial hour due to power failure.
- AV (04-16-24 06:00 through 07:00)
 - Power failure
- BA (04-17-24 08:00 through 10:00)
 - Gas analyzer maintenance
- o V (04-17-24 11:00)

ENVIRONMENT & HEALTH

- Value validated. Partial hour due to gas analyzer maintenance.
- 2 (04-17-24 15:00 through 04-18-24 14:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o V (04-18-24 09:00)
 - Value validated. Partial hour due to multi-point calibration.
- o BC (04-18-24 10:00 through 11:00)
 - Multi-point 'as left' calibration
- o BD (04-19-24 02:00)
 - Overnight calibration
- BD (04-22-24 02:00)
 - Overnight calibration
- o 2 (04-22-24 23:00 through 04-24-24 06:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (04-24-24 02:00)
 - Overnight calibration
 - BD (04-26-24 02:00)
 - Overnight calibration
- o 2 (04-26-24 10:00 through 04-27-24 05:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o BD (04-29-24 02:00)
 - Overnight calibration
- o 2 (04-29-24 20:00 through 05-01-24 00:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- AM (04-30-24 09:00 through 10:00)
 - Filter change

• Orchard

Wind Speed ONLY

0

- o V (04-06-24 13:00)
 - Value validated. Periods with wind gusts above 25.6 m/s invalidated and removed due to poor calibration results. 75% of hour still valid, new value calculated.
- Ozone

- BD (04-01-24 02:00)
 - Overnight calibration
- o BD (04-03-24 02:00)
 - Overnight calibration
- o BD (04-05-24 02:00)
 - Overnight calibration
- BC (04-07-24 10:00 through 11:00)
 - Multi-point 'as found' calibration
 - BD (04-08-24 02:00)
 - Overnight calibration
- V (04-08-24 10:00)
 - Value validated. Partial hour due to filter change.

- AM (04-08-24 11:00)
 - Filter change
- o V (04-08-24 12:00)
 - Value validated. Partial hour due to maintenance testing.
- BA (04-17-24 12:00 through 14:00)
 - Gas analyzer maintenance
- o V (04-18-24 08:00)

- Value validated. Partial hour due to multi-point calibration.
- BC (04-18-24 09:00 through 10:00)
 - Multi-point 'as left' calibration
- BD (04-19-24 02:00)
 - Overnight calibration
- o 2 (04-21-24 22:00 through 04-22-24 04:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (04-22-24 02:00)
 - Overnight calibration
- o AV (04-24-24 02:00 through 04-25-24 11:00)
 - Power failure
- o 2 (04-26-24 01:00 through 04:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (04-26-24 02:00)
 - Overnight calibration
- o 2 (04-28-24 23:00 through 04-29-24 01:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - BD (04-29-24 02:00)
 - Overnight calibration
- o V (04-30-24 10:00)
 - Value validated. Partial hour due to filter change.
- AM (04-30-24 11:00)
 - Filter change

- May
 - Missile Site Park

- Wind Speed & Direction
 - BC (05-30-24 08:00 through 09:00)
 - Quarter 2 calibration
- 2 m, 10 m, & Delta Temperature
 - BC (05-30-24 08:00 through 09:00)
 - Quarter 2 calibration
- Relative Humidity & Air Temperature (non-regulatory)
 - BC (05-30-24 08:00 through 09:00)
 - Quarter 2 calibration
- Solar Radiation
 - BC (05-30-24 08:00 through 09:00)
 - Quarter 2 calibration

Precipitation

0

0

0

- BC (05-30-24 08:00 through 11:00)
 - Quarter 2 calibration
- Ozone/NO/NO2/NOx
 - BD (05-01-24 02:00)
 - Overnight calibration
 - BD (05-02-24 01:00 through 02:00)
 - Overnight calibration
 - BD (05-03-24 02:00)
 - Overnight calibration
 - o V (05-03-24 15:00 through 16:00)
 - Value validated. Partial hours due to calibration testing.
 - BD (05-04-24 02:00)
 - Overnight calibration
 - o BD (05-05-24 01:00 through 02:00)
 - Overnight calibration
 - BD (05-06-24 02:00)
 - Overnight calibration
 - o BD (05-07-24 02:00)
 - Overnight calibration
 - BD (05-08-24 02:00)
 - Overnight calibration
 - BD (05-09-24 01:00 through 02:00)
 - Overnight calibration
 - BD (05-10-24 02:00)
 - Overnight calibration
 - o BD (05-11-24 02:00)
 - Overnight calibration
 - BD (05-12-24 01:00 through 02:00)
 - Overnight calibration
 - o BD (05-13-24 02:00)
 - Overnight calibration
 - BD (05-14-24 02:00)
 - Overnight calibration
 - BD (05-15-24 02:00)
 - Overnight calibration
 - BD (05-16-24 01:00 through 02:00)
 - Overnight calibration
 - BD (05-17-24 02:00)
 - Overnight calibration
 - BD (05-18-24 02:00)
 - Overnight calibration
 - BD (05-19-24 01:00 through 02:00)
 - Overnight calibration

- o BD (05-20-24 02:00)
 - Overnight calibration
- V (05-20-24 11:00)
 - Value validated. Partial hour due to calibration testing.
- AT (05-20-24 12:00)
 - Calibration testing.
- V (05-20-24 13:00)
 - Value validated. Partial hour due to calibration testing.
- BD (05-21-24 02:00)
 - Overnight calibration
- BD (05-22-24 02:00)
 - Overnight calibration
- BD (05-23-24 01:00 through 02:00)
 - Overnight calibration
- BD (05-24-24 02:00)
 - Overnight calibration
 - BD (05-25-24 02:00)

0

- Overnight calibration
- BD (05-26-24 01:00 through 02:00)
 - Overnight calibration
- BD (05-27-24 02:00)
 - Overnight calibration
- BD (05-28-24 02:00)
 - Overnight calibration
 - V (05-28-24 13:00)
 - Value validated. Partial hour due to filter change.
- o AM (05-28-24 14:00) OZONE ONLY
 - Filter change
- o AK (05-28-24 14:00 through 05-30-24 10:00) NO/NO2/NOx ONLY
 - Filter leak
- BD (05-29-24 02:00)
 - Overnight calibration
 - BD (05-30-24 01:00 through 02:00)
 - Overnight calibration
- AT (05-30-24 11:00 through 12:00)
 - Calibration testing
- o BD (05-31-24 02:00)
 - Overnight calibration
- o Hereford
 - Ozone
 - o 2 (05-01-24 01:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - BD (05-01-24 02:00)
 - Overnight calibration

- o 2 (05-02-24 09:00 through 16:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (05-03-24 02:00)
 - Overnight calibration
- BD (05-06-24 02:00)
 - Overnight calibration
- 2 (05-06-24 13:00 through 05-07-24 00:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - BD (05-08-24 02:00)

- Overnight calibration
- BD (05-10-24 02:00)
 - Overnight calibration
- o 2 (05-10-24 21:00 through 05-11-24 01:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (05-13-24 02:00)
 - Overnight calibration
- BD (05-15-24 02:00)
 - Overnight calibration
- o BD (05-17-24 02:00)
 - Overnight calibration
- AV (05-19-24 14:00 through 16:00)
 - Power failure
- BD (05-20-24 02:00)
 - Overnight calibration
 - AV (05-21-24 00:00 through 01:00)
 - Power failure
- 2 (05-21-24 04:00 through 12:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (05-22-24 02:00)
 - Overnight calibration
- 2 (05-22-24 18:00 through 05-23-24 01:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o BD (05-24-24 02:00)
 - Overnight calibration
- 2 (05-24-24 02:00 through 14:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (05-24-24 19:00 through 05-25-24 07:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o V (05-25-24 16:00)
 - Value validated. Partial hour due to power failure.
- o BD (05-27-24 02:00)
 - Overnight calibration
- AM (05-28-24 10:00 through 11:00)
 - Filter change

- o BD (05-29-24 02:00)
 - Overnight calibration
- o BD (05-31-24 02:00)
 - Overnight calibration
- o Orchard
 - Ozone

- BD (05-01-24 02:00)
 - Overnight calibration
 - BD (05-03-24 02:00)
 - Overnight calibration
- BD (05-06-24 02:00)
 - Overnight calibration
- BD (05-08-24 02:00)
 - Overnight calibration
- BD (05-10-24 02:00)
 - Overnight calibration
 - BD (05-13-24 02:00)
 - Overnight calibration
- BD (05-15-24 02:00)
 - Overnight calibration
- BD (05-17-24 02:00)
 - Overnight calibration
- o BD (05-20-24 02:00)
 - Overnight calibration
- BD (05-22-24 02:00)
 - Overnight calibration
- BD (05-24-24 02:00)
 - Overnight calibration
- BD (05-27-24 02:00)
 - Overnight calibration
- o V (05-28-24 11:00)
 - Value validated. Partial hour due to filter change.
- AM (05-28-24 12:00)
 - Filter change
- BD (05-29-24 02:00)
 - Overnight calibration
- o BD (05-31-24 02:00)
 - Overnight calibration

- June
 - o Missile Site Park
 - Ozone/NO/NO2/NOx
 - BD (06-01-24 02:00)
 - Overnight calibration
 - BD (06-02-24 01:00 through 02:00)

- Overnight calibration
- BD (06-03-24 02:00)
 - Overnight calibration
- BD (06-04-24 02:00)
 - Overnight calibration
- BD (06-05-24 02:00)
 - Overnight calibration
- BD (06-06-24 01:00 through 02:00)
 - Overnight calibration
- o BD (06-07-24 02:00)
 - Overnight calibration
- o BD (06-08-24 02:00)
 - Overnight calibration
- BD (06-09-24 01:00 through 02:00)
 - Overnight calibration
- o BD (06-10-24 02:00)
 - Overnight calibration
- o BD (06-11-24 02:00)
 - Overnight calibration
- BD (06-12-24 02:00)
 - Overnight calibration
- o BD (06-13-24 01:00 through 02:00)
 - Overnight calibration
- AT (06-13-24 11:00 through 12:00)
 - Calibration testing
- BD (06-14-24 02:00)
 - Overnight calibration
- o BD (06-15-24 02:00)
 - Overnight calibration
- BD (06-16-24 01:00 through 02:00)
 - Overnight calibration
- o BD (06-17-24 02:00)
 - Overnight calibration
- o V (06-17-24 12:00)
 - Value validated. Partial hour due to calibration testing.
- AT (06-17-24 13:00)
 - Calibration testing
- BD (06-18-24 02:00)
 - Overnight calibration
- BD (06-19-24 02:00)
 - Overnight calibration
- BD (06-20-24 01:00 through 02:00)
 - Overnight calibration
- BD (06-21-24 02:00)

- Overnight calibration
- BD (06-22-24 02:00)
 - Overnight calibration
- BD (06-23-24 01:00 through 02:00)
 - Overnight calibration
- BD (06-24-24 02:00)
 - Overnight calibration
- o BD (06-25-24 02:00)
 - Overnight calibration
- o AM (06-25-24 13:00)
 - Filter change
- o V (06-25-24 14:00)
 - Value validated. Partial hour due to filter change.
- BD (06-26-24 02:00)
 - Overnight calibration
- BD (06-27-24 01:00 through 02:00)
 - Overnight calibration
- AT (06-27-24 12:00)
 - Calibration testing
- BD (06-28-24 02:00)
 - Overnight calibration
- BD (06-29-24 02:00)
 - Overnight calibration
- BD (06-30-24 01:00 through 02:00)
 - Overnight calibration
- \circ Hereford

- Wind Speed & Direction
 - BC (06-21-24 09:00 through 10:00)
 - Quarter 2 calibration
- 2-meter, 10-meter, & Delta Temperature
 - BC (06-21-24 09:00 through 10:00)
 - Quarter 2 calibration
 - Relative Humidity & Air Temperature (non-regulatory)
 - o BC (06-21-24 09:00 through 10:00)
 - Quarter 2 calibration
- Solar Radiation
 - BC (06-21-24 09:00 through 10:00)
 - Quarter 2 calibration
- Precipitation
 - BC (06-21-24 10:00 through 13:00)
 - Quarter 2 calibration
- Ozone
 - o BD (06-03-24 02:00)
 - Overnight calibration

- o BD (06-05-24 02:00)
 - Overnight calibration
- BD (06-07-24 02:00)
 - Overnight calibration
- BD (06-10-24 02:00)
 - Overnight calibration
- AV (06-10-24 16:00)
 - Power failure
 - V (06-10-24 17:00 through 18:00)
 - Value validated. Partial hour to due power failure.
- BD (06-12-24 02:00)

0

0

- Overnight calibration
- BD (06-14-24 02:00)
 - Overnight calibration
- BD (06-17-24 02:00)
 - Overnight calibration
 - BD (06-19-24 02:00)
 - Overnight calibration
- o BD (06-21-24 02:00)
 - Overnight calibration
- o 2 (06-22-24 05:00 through 18:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- o 2 (06-22-24 22:00 through 23:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - BD (06-24-24 02:00)
 - Overnight calibration
- AM (06-25-24 10:00)
 - Filter change
- V (06-25-24 11:00)
 - Value validated. Partial hour due to filter change.
- BD (06-26-24 02:00)
 - Overnight calibration
 - BD (06-28-24 02:00)
 - Overnight calibration
- o Orchard
 - Wind Speed & Direction
 - V (06-08-24 15:00) Wind Speed ONLY
 - Value validated. Periods with wind gusts above 25.6 m/s invalidated and removed due to failing calibration results. 75% of hour still valid, new value calculated.
 - BC (06-25-24 09:00 through 11:00)
 - Quarter 2 calibration
 - 2-meter, 10-meter, & Delta Temperature
 - BC (06-25-24 09:00 through 11:00)

- Quarter 2 calibration
- Relative Humidity & Air Temperature (non-regulatory)
 - BC (06-25-24 09:00 through 11:00)
 - Quarter 2 calibration
- Solar Radiation
 - BC (06-25-24 09:00 through 11:00)
 - Quarter 2 calibration
- Precipitation
 - BC (06-25-24 08:00 through 13:00)
 - Quarter 2 calibration
- Ozone
 - BD (06-03-24 02:00)
 - Overnight calibration
 - BD (06-05-24 02:00)
 - Overnight calibration
 - o BD (06-07-24 02:00)
 - Overnight calibration
 - 2 (06-07-24 16:00 through 06-08-24 18:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - o BD (06-10-24 02:00)
 - Overnight calibration
 - BD (06-12-24 02:00)
 - Overnight calibration
 - o 2 (06-12-24 17:00 through 06-13-24 18:00)
 - Standard deviation of shelter temperature greater than 2.1°C
 - o BD (06-14-24 02:00)
 - Overnight calibration
 - o AW (06-14-24 03:00 through 06-19-24 01:00)
 - Insects in inlet
 - BD (06-19-24 02:00)
 - Overnight calibration
 - o V (06-19-24 08:00)
 - Value validated. Partial hour due to maintenance.
 - BA (06-19-24 09:00 through 10:00)
 - Maintenance removal of insects.
 - V (06-19-24 11:00)

- Value validated. Partial hour due to maintenance.
- BD (06-21-24 02:00)
 - Overnight calibration
- o 2 (06-23-24 15:00 through 06-29-24 18:00)
 - Standard deviation of shelter temperature greater than 2.1°C
- BD (06-24-24 02:00)
 - Overnight calibration
- o V (06-25-24 11:00)

- Value validated. Partial hour due to filter change.
- AM (06-25-24 12:00)
 - Filter change
- BD (06-26-24 02:00)
 - Overnight calibration
- BD (06-28-24 02:00)
 - Overnight calibration
- o 2 (06-30-24 18:00 through 07-01-24 00:00)
 - Standard deviation of shelter temperature greater than 2.1°C

APPENDIX B2: CORRECTIVE ACTION REPORT 24

CORRECTIVE ACTION REPORT NO.: 24

ToDan JosephFromAbe Dearden and Jake ZaragozaCopy toCourtney Taylor and Kaitlyn Elkind

Problem Identification					
Site (Location):	Orchard				
System or Instrumentation:	Teledyne T400				
Estimated start date/time	6/14/2024				
Problem identified by:	Blake Himes / Abraham Dearden				
Problem definition: • Parameter (s) affected	Ozone nightly calibration failed. Abnormal flows seen in the instrument during a manual calibration check. Suspect insects trapped in the inlet. • Ozone				
Planned corrective actions	Clean inlet.				
(if necessary):	Expected Completion Date:	06/19/2024			
Problem Resolution					

Problem Resolution					
Date corrective o6/19/20 action taken:)24			
Action taken by: Adam Ch		ristman			
Corrective action taken:	Cleaned sample inlet, filter holder, and nafion T's.				
Effectiveness of corrective actions:		Yes, it was resolved		No, it was NOT resolved	
Corrective Action Report Author & Date				Signature	

Corrective Action Report Author & Date	Signature
Prepared by: Abraham Dearden	$C \square A$
Date: 07/24/2024	
QA Officer: Michael Ring	"filhael flig
Date: 7/26/2024	

APPENDIX B3: CORRECTIVE ACTION REPORT 25

CORRECTIVE ACTION REPORT NO.: 25

To Dan Joseph From Abe Dearden and Jake Zaragoza

Copy to Courtney Taylor and Kaitlyn Elkind

	Problem Identification			
Site (Location):	Orchard			
System or Instrumentation:	RM Young 05305V Wind Speed			
Estimated start date/time	11/28/2023			
Problem identified by:	Adam Christman / Jake Zaragoza			
Problem definition: • Parameter (s) affected	Final point of multi-point wind speed check on 6/25 failed. • Horizontal Wind Speed			
Planned corrective actions	Re-scale wind speed channel and adjust data as necessary.			
(if necessary):	Expected Completion Date: 06/25/2024 & 07/03/2024			

Problem Resolution					
Date corrective action taken:	06/25/20	06/25/2024 & 07/03/2024			
Action taken by:	Jake Zara	igoza			
Corrective action taken:	On 06/25 the wind speed channel was re-scaled, and a second multi-point check was performed. All points passed the second check. On 07/03 the data between the last passing multi-point check (11/28/2023) and the 06/25 check were reviewed for wind speed gust values at or above 25.6 meters per second (the failing value). Two instances were found (4/6/2024 and 6/8/2024). The hourly values were re-calculated with the wind speed gust values at or above 25.6 meters per second removed.				
Effectiveness of c actions:	ffectiveness of corrective Yes, it was resolved No, it was NOT resolved				
Corrective	Corrective Action Report Author & Date Signature				
Prepared by: Jake Zaragoza 54					

QA Officer: Michael Ring Date: 07/05/2024 ntichaelfrig

APPENDIX C: Q2 2024 SITE VISITATION LOGS

							Missi	le Site Park Site Access Log
Name	Date	Arrival	Departure	Last Filte	er change	Pump off	Pump on	Notes
				NOx	Ozone			
Zaragoza (remote)	4/7/2024	9:32	13:55					As found 2nd quarter calibration check
								On site to remove calibrator for recertification. Filter change for
								condition new filters. Zero-span check occurred from 7:09 to 7:
								Calibration line removed and plugged. Ozone pump replacement
Zaragoza	4/8/2024	6:47	8:20	4/8/2024	4/8/2024	6:50	7:10	no longer than 2 minutes) between 7:42 and 8:15.
								On site to reinstall calibrator. Back pressure comp started 15:12
								19:51 to 20:21. NO/NO2/NOx Zero/Span/Precision from 20:21 to
Zaragoza/Christman	4/17/2024	14:52	18:20					15:19 and from 19:51 to 21:05.
								On site to rebuild O3 and Nox pumps & install new Nafion tubir
Christman	4/18/2024	7:18	11:20					leak check good after maintenance; Z/S O3 good; Z/S Nox slowe
Dearden	4/18/2024	10:33	16:12					Remote multi-point as-left calibration. Gas analyzers offline 10:
								Remote ZSP to doublecheck ozone response. T400 zero response
Zaragoza (remote)	4/19/2024	12:33	12:58					precision = 61.26, T700 precision 60.2.
Garcia	4/30/2024	12:07	12:30	4/30/2024	4/30/2024	12:19	12:22	NOx/AMoN/NADP Sample swapped and retrieved
Dearden (Remote)	5/3/2024	14:46	15:10					Remote ZSP check for ozone. Passing results. Instrument offline
Dearden (Remote)	5/20/2024	10:49	12:00					Remote GPT Span check. Passing results.
Gacia	5/28/2024	13:22	13:58	5/21/2024	5/28/2024	13:46	13:52	NOx and NADP sample swapped and retrieved; WCDPHE training
								On site for semiannual calibration of met equipment. Tower do
Zaragoza / Christman	5/30/2024	7:35	12:20					loose filter cover on T200 at 10:13.
Dearden (Remote)	5/30/2024	11:22	12:20					Manual GPT precision check, post filter leak correction. Passing
Dearden (Remote)	6/13/2024	10:27	11:27					Manual GPT Precision check, passing results in minute data file.
Dearden (Remote)	6/17/2024	11:51	12:33					Manual Ozone PSZ check, passing results in minute data file.
Dearden (Remote)	6/27/2024	11:01	11:51					Manual GPT Precision check, passing results in minute data file.

ENVIRONMENT & HEALTH

for ozone and NOx performed. Zero-span check for ozone and NOx performed to 7:42. Zero air line, gas cylinder lines removed and capped. Gas cylinder closed. nent head screws tested (pump turned off and turned back on twice; pump off times

:12 to 15:19. MFC checks from 15:30 to 18:18. Ozone Zero/Span/Precision from 1 to 21:05. Zero/Span/Precisions performed remotely. Gases down from 15:12 to

bing in T200; systems down for maintenance from 06:26 to 10:14; both systems wer to stabilize but okay after conditioning

10:33-16:12

onse = .586, T700 zero = 0. T400 span response: 398.74, T700 span = 399.5. T400

ine 14:46 through 15:10 MST.

ning of new site operator, Alex Clemments down at 07:23, tower up at 08:51. RNF checks from ~07:15 to 10:15. Tightened

ng results in minute data. Gasses invalid 11:22 - 12:20 MDT ile.

ile.

	Hereford Site Access Log						
Name	Date	Arrival	Departure	Last Filter change	Pump off	Pump on	Notes
				Ozone			
Zaragoza (remote)	4/7/2024	9:34	10:38				As found 2nd quarter calibration check
-	4/0/2024	12.01	44.25	4/0/2024	42.07		On site for calibrator removal for recertification. Ozone filter repl filter conditioning. Zero-span performed between 13:04 and 13:2 replaced. T703 compressor rebuilt. Output flow increased from 4
Zaragoza	4/8/2024	13:01	14:35	4/8/2024	13:02	13:04	removed and plumbed to itself. Calibration line removed and plu On site for calibrator reinstall and site maintenance. Back pressu
							7:25. Zero/Span/Prec performed at 7:31, end time not recorded.
Zaragoza/Christman	4/17/2024	6:58	9:57				rebuilt around 8:10. Ozone down from 7:25 to ~10:05
Dearden	4/18/2024	8:59	10:42				Remote multi-point as-left calibrations. Ozone offline 8:59 - 10:42
Garcia	4/30/2024	9:28	9:40	4/30/2024	9:31	L 9:37	Dessicant, NOx/O3 filter change
Garcia	5/28/2024	10:13	10:33	5/28/2024	10:20) 10:30	Dessicant, NOx/O3 filter change; WCDPHE training new site oper
Zaragoza/Christman	6/21/2024	8:34	13:43				On site for semiannual calibration of met equipment. Tower dow from 10:58-13:30 MDT.

ENVIRONMENT

eplaced and zero-span performed for 3:29. T703 PM and charcoal filters 4.17 LPM to 5.12 LPM. Desiccant lugged. Left site at 14:35 sure compensation performed at ed. Inlet replaced at 8:05. Ozone pump :42

perator, Alex Clemments own at 09:00-10:50 MDT. RNF checks

	Orchard Site Access Log						
Name	Date	Arrival	Departure	Last Filter change	Pump off	Pump on	Notes
				Ozone			
Zaragoza (remote)	4/7/2024	9:33	10:36				As found 2nd quarter calibration check
							On site to remove calibrator for recertification. Ozone filter replaced ar
							Zero-span occurred from 9:46 to 10:15. T703 PM and charcoal filters re
							flow increased from 4.04 LPM to 5.27 LPM. Desiccant removed and loc
Zaragoza	4/8/24	9:44	11:30	4/8/24	9:46	9:48	plugged. Left site at11:30
							On site to reinstall calibrator. Backpressure compensation started at 11
							ended at 11:58. Ozone inlet replaced and ozone pump replaced right a
Zaragoza/Christman	4/17/24	11:00	13:35				from 11:28 to ~13:35
Dearden	4/18/24	7:54	9:30				Remote multi-point as-left calibrations. Ozone offline 7:54 - 9:30
Garcia	4/30/24	10:48	11:04	4/30/24	10:56	11:02	Dessicant, NOx/O3; NADP Sample retrieved
Garcia	5/28/24	11:37	12:10	5/28/24	11:59	12:06	Dessicant, NOx/O3; NADP Sample retrieved; WCDPHE training new site
							Emergency visit to investigate low/inconsistent calibration checks on T
							obstructions found with pneumatics. As found ZSP checked good and is
							checked good. T703 produced sufficient flows and achieved targets qu
							were found in the sample filter holder and 1 more noted upstream of t
							found fully consumed. Cleaned sample filter holder, back panel sample
Christman	6/19/24	8:35	11:36		10:20	10:35	down from 8:55-11:08 MDT
							On site for semiannual calibration of met equipment. Tower down from
Zaragoza/Christman	6/25/24	8:42	14:15				07:56-12:45 logger time.

ENVIRONMENT & HEALTH

and zero-span performed to condition filter. s replaced. T703 compressor rebuilt. Output looped to itself, calibration line removed and

11:28. Zero/Span/Prec started at 11:33 and after. Times not recorded. Ozone down

site operator, Alex Clemments

T400 & T703. No disconnects or issue could not be replicated. Diagnostics quickly without issue. A few small mite flies f the first Nafion tube tee. Dessicant was also ple inlet, and nafion tubing tee's. Ozone

rom 09:02-11:40 MDT. RNF checks from

APPENDIX D: Q2 2024 CALIBRATION STATISTICS

APPENDIX D: Q2 2024 CALIBRATION STATISTICS

CONTENTS

D.1	Preface	2
D.2	Missile Site Park Site	2
Ozone	e (O ₃)	2
	Oxide (NO)	
	en Dioxide (NO ₂)	
Nitrog	en Oxides (NOx)	9
D.3	Hereford Site 1	1
Ozone	e (O ₃)1	1
	Orchard Site 1	
Ozone	e (O ₃)1	3

Figures

Figure D - 1.	2024 Q2 Calibration span percent difference for O3 at Missile Site Park	3
Figure D - 2.	2024 Q2 Calibration precision percent difference for O ₃ at Missile Site Park	3
Figure D - 3.	2024 Q2 Calibration span percent difference for NO at Missile Site Park	5
Figure D - 4.	2024 Q2 Calibration precision percent difference for NO at Missile Site Park	5
Figure D - 5.	2024 Q2 Converter efficiency for NO ₂ at Missile Site Park	7
Figure D - 6.	2024 Q2 Calibration span percent difference for NO2 at Missile Site Park	7
Figure D - 7.	2024 Q2 Calibration precision percent difference for NO ₂ at Missile Site Park	8
Figure D - 8.	2024 Q2 Calibration span percent difference for NOx at Missile Site Park	9
Figure D - 9.	2024 Q2 Calibration precision percent difference for NOx at Missile Site Park	10
Figure D - 10.	2024 Q2 Calibration span percent difference for O3 at Hereford	11
Figure D - 11.	2024 Q2 Calibration precision percent difference for O ₃ at Hereford	12
Figure D - 12.	2024 Q2 Calibration span percent difference for O3 at Orchard	13
Figure D - 13.	2024 Q2 Calibration precision percent difference for O ₃ at Orchard	14

Tables

Table D - 1.	Summary of 2024 Q2 calibrat	tion statistics for O_3 at Missile Site Park	4
Table D - 2.	Summary of 2024 Q2 calibrat	tion statistics for NO at Missile Site Park	6
Table D - 3.	Summary of 2024 Q2 calibrat	tion statistics for NO2 at Missile Site Park	8
Table D - 4.	Summary of 2024 Q2 calibrat	tion statistics for NOx at Missile Site Park	10
Table D – 5.	Summary of 2024 Q2 calibrat	tion statistics for O_3 at Hereford	12
Table D - 6.	Summary of 2024 Q2 calibrat	tion statistics for O_3 at Orchard	14

D.1 PREFACE

Appendix D of the Quality Assurance Handbook Volume II (<u>https://www.epa.gov/sites/default/files/2020-</u>

10/documents/app_d_validation_template_version_03_2017_for_amtic_rev_1.pdf) specifies the frequency and allowable ranges of the one-point quality control (precision), zero, and span checks for ozone and NO/NO₂/NOx, which are based on the Code of Federal Regulations (CFR). These allowable ranges are mostly percent differences between a measured point and the audit point. At each site, the measured point was taken as a 3-minute average of a stable analyzer reading while receiving calibration gas. The audit point is a preset calibration target that the on-site calibrators produce. For both ozone and NO/NOx, the precision check is 60 ppb and the span check is 400 ppb. For NO₂, the target output concentrations from the calibrator are 48 ppb and 160 ppb for precision and span checks, respectively. Since the calibrator only indirectly calculates NO₂ concentration, the actual target NO₂ output is calculated as the difference in NO between the gas phase titration zero (GPTZ) and the gas phase titration (GPT) phases. The analyzer is then challenged against these actual target NO₂ concentrations¹. Each figure below highlights the percent difference between the measured point and the audit point, with the upper and lower lines representing the allowable upper and lower limits. NO₂ has an additional requirement for calculation of the converter efficiency in converting NO₂ to NO. Each converter efficiency check is plotted for it.

Additionally, each table below represents the results of the calculations detailed in 40CFR58, Appendix A, Section 4 'Calculations for Data Quality Assessments' (<u>https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-58</u>). They are provided only for informational purposes.

D.2 MISSILE SITE PARK SITE

Ozone (O₃)

Figure D - 1 and **Figure D - 2** below show the calibration span and precision percent differences for ozone at the Missile Site Park site. **Table D - 1** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4. These values are estimated from a sample of the entire dataset at the site. The calibrator was removed from April 8th through 17th for recertification.

¹ Previous reporting of the NO₂ span and precision results utilized constant target values of 48 ppb and 160 ppb, respectively. The procedure has been updated based on the CFR guidance, however both methods are acceptable.

Figure D - 1. 2024 Q2 Calibration span percent difference for O₃ at Missile Site Park.

Figure D - 2. 2024 Q2 Calibration precision percent difference for O₃ at Missile Site Park.

Formula	Precision	Span
STDEV	1.38	0.42
Count	37	37
Chi ² , 0.1, n-1	25.64	25.64
CV	1.64	0.50
Bias	2.50	0.39
Bias (+/-/U)	+	U
AB	2.12	0.30
AS	1.38	0.32
to.95, n-1	1.69	1.69
25 th	1.27	-0.39
75 th	2.57	0.07

Table D - 1.Summary of 2024 Q2 calibration statistics for O3 at Missile Site Park.

Nitric Oxide (NO)

Figure D - 3 and **Figure D - 4** below show the calibration span and precision percent differences for NO at the Missile Site Park site. The calibrator was removed from April 8th through 17th for recertification. During the Q2 semi-annual calibration and audit checks, the sample filter housing was discovered to be loose. This occurred between regularly scheduled calibration checks and the issue was resolved while Ramboll staff were on site for calibration checks. As a result, data has been invalidated between May 28th and May 30th from the time of the previous sample filter change until the time at which the issue was resolved. **Table D - 2** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4.

Figure D - 3. 2024 Q2 Calibration span percent difference for NO at Missile Site Park.

Figure D - 4. 2024 Q2 Calibration precision percent difference for NO at Missile Site Park.

Table D - 2. Summary C		LION STATISTICS TO	NU at MISSI
Formula	Precision	Span	
STDEV	0.57	0.38	
Count	23	23	
Chi ² , 0.1, n-1	14.04	14.04	
CV	0.71	0.47	
Bias	1.41	1.67	
Bias (+/-/U)	-	-	
AB	1.21	1.53	
AS	0.57	0.38	
to.95, n-1	1.72	1.72	
25 th	-1.58	-1.73	
75 th	-0.93	-1.33	

Table D - 2.Summary of 2024 Q2 calibration statistics for NO at Missile Site Park.

Nitrogen Dioxide (NO₂)

Beginning March 3rd, 2024, nightly NO₂ calibrations were updated to challenge a span concentration once a week (160 ppb) in addition to the precision concentration, which was reduced in frequency to once per week to accommodate the new span calibrations. **Figure D - 5** below shows the converter efficiency during both precision (shown in blue) and span (shown in gold) calibrations for NO₂. **Figure D - 6** and **Figure D - 7** below show the calibration percent difference for NO₂ during precision and span calibrations, respectively. The calibrator was removed from April 8th through 17th for recertification. During the Q2 semi-annual calibration and audit checks, the sample filter housing was discovered to be loose. This occurred between regularly scheduled calibration checks and the issue was resolved while Ramboll staff were on site for calibration checks. As a result, data has been invalidated between May 28th and May 30th from the time of the previous sample filter change until the time at which the issue was resolved. **Table D - 3** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4.

Figure D - 5. 2024 Q2 Converter efficiency for NO₂ at Missile Site Park.

Figure D - 6. 2024 Q2 Calibration span percent difference for NO₂ at Missile Site Park.

Figure D - 7. 2024 Q2 Calibration precision percent difference for NO₂ at Missile Site Park.

Tuble D S. Summary of 2024 Q2 cumbration statistics it					
Formula	Precision	Span			
STDEV	2.60	0.83			
Count	14	12			
Chi ² , 0.1, n-1	7.04	5.58			
CV	3.53	1.17			
Bias	10.29	1.32			
Bias (+/-/U)	+	+			
AB	9.06	0.99			
AS	2.60	0.63			
to.95, n-1	1.77	1.80			
25 th	7.29	0.36			
75 th	10.57	1.39			

 Table D - 3.
 Summary of 2024 Q2 calibration statistics for NO2 at Missile Site Park.

Nitrogen Oxides (NOx)

Figure D - 8 and **Figure D - 9** below show the calibration span and precision percent differences for NOx at the Missile Site Park site. The calibrator was removed from April 8th through 17th for recertification. During the Q2 semi-annual calibration and audit checks, the sample filter housing was discovered to be loose. This occurred between regularly scheduled calibration checks and the issue was resolved while Ramboll staff were on site for calibration checks. As a result, data has been invalidated between May 28th and May 30th from the time of the previous sample filter change until the time at which the issue was resolved. **Table D - 4** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4.

Figure D - 8. 2024 Q2 Calibration span percent difference for NOx at Missile Site Park.

Figure D - 9. 2024 Q2 Calibration precision percent difference for NOx at Missile Site Park.

Formula	Precision	Span
STDEV	0.64	0.26
Count	23	23
Chi ² , 0.1, n-1	14.04	14.04
CV	0.80	0.32
Bias	0.78	0.31
Bias (+/-/U)	-	U
AB	0.64	0.24
AS	0.41	0.19
t _{0.95} , n-1	1.72	1.72
25 th	-0.79	-0.30
75 th	-0.06	0.03

 Table D - 4.
 Summary of 2024 Q2 calibration statistics for NOx at Missile Site Park.

D.3 HEREFORD SITE

Ozone (O₃)

Figure D - 10 and **Figure D - 11** below show the calibration span and precision percent differences for ozone at Hereford site. Each check is within the upper and lower bounds specified in Appendix D of the Quality Assurance Handbook Volume II. **Table D - 5** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4. The calibrator was removed from April 8th through 17th for recertification.

Figure D - 10. 2024 Q2 Calibration span percent difference for O₃ at Hereford.

Figure D - 11. 2024 Q2 Calibration precision percent difference for O₃ at Hereford.

Formula	Precision	Span
STDEV	1.18	0.44
Count	35	35
Chi ² , 0.1, n-1	23.95	23.95
CV	1.41	0.52
Bias	2.22	0.43
Bias (+/-/U)	+	U
AB	1.91	0.35
`AS	1.11	0.29
to.95, n-1	1.69	1.69
25 th	1.03	-0.07
75 th	2.66	0.40

 Table D - 5.
 Summary of 2024 Q2 calibration statistics for O3 at Hereford.

D.4 ORCHARD SITE

Ozone (O₃)

Figure D - 12 and **Figure D - 13** below show the calibration span and precision percent differences for ozone at Orchard. Each check is within the upper and lower bounds specified in Appendix D of the Quality Assurance Handbook Volume II except the calibration check that occurred on June 17th 2024, indicated by the red points in **Figure D - 12** and **Figure D - 13**. Troubleshooting revealed that insects had migrated into the sample line at some point between this calibration check and the previous successful check on June 14th 2024. Data has been invalidated from June 14th through June 19th 2024 between the time of the last known successful calibration check and subsequent successful calibration check. The calibrator was removed from April 8th through 17th for recertification, and there was an unsuccessful calibration due to a power failure on April 24th. **Table D - 6** highlights the assessment statistics detailed in 40CFR58, Appendix A, Section 4 and does not include calibration data from periods that were invalidated or during which the analyzer was offline.

Figure D - 12. 2024 Q2 Calibration span percent difference for O_3 at Orchard.

Figure D - 13. 2024 Q2 Calibration precision percent difference for O₃ at Orchard.

Tuble D 0. Summary of 2024 Q2 cumbration statistics to		
Formula	Precision	Span
STDEV	1.14	0.40
Count	33	33
Chi ² , 0.1, n-1	22.27	22.27
CV	1.37	0.48
Bias	1.60	0.58
Bias (+/-/U)	+	-
AB	1.30	0.48
AS	1.00	0.36
to.95, n-1	1.69	1.69
25 th	0.64	-0.55
75 th	1.67	-0.20

Table D - 6.Summary of 2024 Q2 calibration statistics for O3 at Orchard.