PUBLIC WORKS DEPARTMENT # WELD COUNTY 2045 TRANSPORTATION PLAN #### PREPARED FOR WELD COUNTY COMMISSIONERS 1150 O STREET GREELEY, COLORADO 80631 #### PREPARED BY WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H STREET GREELEY, COLORADO 80631 NOVEMBER 9, 2020 # TABLE OF CONTENTS | INTRODUCTION | 6 | |--|-----| | Purpose | 8 | | Background | 9 | | Demographics | 13 | | PLAN CONTEXT | 16 | | Planning Process | 17 | | Policies and Guiding Principles | 19 | | INVENTORY OF EXISTING CONDITIONS | | | Roadway Conditions | | | Traffic Volumes | 26 | | Level of Service | 27 | | Crash Data Analysis | 31 | | Multimodal Facilities | 34 | | Hazardous Materials Corridors | 40 | | Freight Corridors | 41 | | Weather Stations | | | OPERATIONS | | | Asphalt Paved Roads | 45 | | Concrete Roads | | | Gravel Roads | | | Snow Removal | | | Bridges | | | REGIONAL TRANSPORTATION PLANNING | | | NFRMPO | | | UFRTPR | | | DRCOG | | | Transportation Partnerships | | | 8-Hour Ozone Nonattainment Area | | | ACCESS CONTROL PLANS | | | Access Management | | | Completed Access Control Plans | | | Future Access Control Plans | | | ROAD CLASSIFICATION PLAN | | | Traffic Forecast Study | | | Traffic Volume Projections | | | Functional Classification Plan | | | Functional Classification Definitions | | | Road Classification Guide | | | IMPLEMENTATION | | | Long Range Transportation Project List | | | Capital Improvements Plan (CIP) | | | Strateaies | 100 | ## LIST OF FIGURES - FIGURE 1 WELD COUNTY VICINITY MAP - FIGURE 2 THOROUGHFARE MAP (1973) - FIGURE 3 ROAD CLASSIFICATION MAP (1995) - FIGURE 4 FUNCTIONAL CLASSIFICATION MAP (2011) - FIGURE 5 2015 POPULATION DENSITY - FIGURE 6 2045 POPULATION DENSITY - FIGURE 7 2015 EMPLOYMENT DENSITY - FIGURE 8 2045 EMPLOYMENT DENSITY - FIGURE 9 MOST TRAVELED COUNTY ROADS (2020) - FIGURE 10 LEVEL OF SERVICE DIAGRAM - FIGURE 11 LEVEL OF SERVICE MAP - FIGURE 12 2019 CRASH ANALYSIS MAP - FIGURE 13 CRASH LOCATIONS (2015-2019) - FIGURE 14 RAILROAD AND AIR TRANSPORTATION - FIGURE 15 REGIONAL TRANSIT - FIGURE 16 REGIONAL TRAILS - FIGURE 17 NUCLEAR AND HAZARDOUS MATERIALS ROUTES - FIGURE 18 FREIGHT CORRIDORS - FIGURE 19 ROAD TREATMENT THRESHOLDS - FIGURE 20 COUNTY MAINTAINED ROADS - FIGURE 21 BRIDGE SUFFICIENCY SCORING - FIGURE 22 BRIDGE LOCATIONS - FIGURE 23 MPO BOUNDARIES - FIGURE 24 8-HOUR OZONE NONATTAINMENT BOUNDARY - FIGURE 25 SUBAREA ROAD LOCATIONS - FIGURE 26 TRIP INTERACTION BETWEEN REGIONS - FIGURE 27 TRAFFIC VOLUMES (2015) - FIGURE 28 TRAFFIC VOLUMES (2045) - FIGURE 29 TRUCK TRAFFIC VOLUMES (2015) - FIGURE 30 TRUCK TRAFFIC VOLUMES (2045) - FIGURE 31 GUIDE TO MODIFYING ROAD CLASSIFICATIONS - FIGURE 32 FUNCTIONAL CLASSIFICATION MAP ## LIST OF TABLES - TABLE 1 PROJECTED POPULATION GROWTH - TABLE 2 JOBS BY SECTOR - TABLE 3 TOP TEN CRASH LOCATIONS (2015-2019) - TABLE 4 RAILROAD COMPANIES - TABLE 5 SUBAREA GROWTH RATES - TABLE 6 TOP DESTINATIONS FROM WELD COUNTY - TABLE 7 TOP ORIGINS TO WELD COUNTY - TABLE 8 TRIP INTERACTION BETWEEN REGIONS (VPD) - TABLE 9 ROAD CLASSIFICATION DEFINITIONS - TABLE 10 SHORT-RANGE PROJECT LIST (2021-2025) - TABLE 11 MID-RANGE PROJECT LIST (2026-2035) - TABLE 12 LONG-RANGE PROJECT LIST (2036-2045) ## **APPENDICES** - APPENDIX A TRAFFIC MODEL ROADWAY INVENTORY - APPENDIX B TYPICAL ROAD CROSS-SECTION DIAGRAMS - APPENDIX C CONCEPTUAL CONSTRUCTION COST ESTIMATE - APPENDIX D REFERENCES AND SOURCES ### **ACRONYMS** AADT Annual Average Daily Traffic AASHTO American Assn. of State Highway & Transportation Officials ACP Access Control Plan ADT Average Daily Traffic APFP Adequate Public Facilities Plan BOCC Board of County Commissioners CDOT Colorado Department of Transportation CDPHE Colorado Department of Public Health and Environment CIP Capital Improvements Plan CMAQ Congestion Mitigation and Air Quality CNG Compressed Natural Gas CO Carbon Monoxide DOLA Department of Local Affairs DOT Department of Transportation DRCOG Denver Regional Council of Governments FDR Full Depth Reclamation FHWA Federal Highway Administration GMA Growth Management Area HARP Haul Route Program HUTF Highway Users Tax Fund IGA Intergovernmental Agreement LOS Level of Service MPO Metropolitan Planning Organization MUTCD Manual on Uniform Traffic Control Devices NFRMPO North Front Range Metropolitan Planning Organization PEL Planning and Environmental Linkages Study RAP Reclaimed Asphalt Pavement ROW Right-of-Way SH State Highway SIP State Implementation Plan (Air Quality) TAZ Traffic Analysis Zone TIP Transportation Improvement Program TMA Transportation Management Area TPR Transportation Planning Region UFRTPR Upper Front Range Transportation Planning Region V/C Volume to Capacity Ratio VMT Vehicle Miles Traveled VPD Vehicles Per Day WCR Weld County Road Weld County is the third largest county in the State of Colorado, covering 3,987 square miles in the north central part of the state. Weld County is bordered by the State of Wyoming and the State of Nebraska to the north, Morgan County and Logan County to the east, Adams County and the City and County of Broomfield to the south, and Boulder County and Larimer County to the west. According to the Colorado State Demography Figure 1: Weld County Vicinity Map Weld County's Office, 2019 population estimate is 323,763 residents. The County averages approximately a 3.5% annual growth rate, which identifies Weld County as having the second fastest growth rate among counties in Colorado, and fourteenth largest growth rate in the country for counties with population over 100,000. Greeley, the County seat, had a growth rate of 3% in 2017, making it the seventh highest growth rate in the country for cities. Weld County's importance as an agricultural region dates to its inception in the early 1860's. Today, Weld County continues to be one of the most agriculturally productive counties in the State of Colorado. In terms of value of total agricultural products sold, Weld County ranks as number one in the state, and number nine in the country at \$1.8 billion annually. Oil and gas production activities have occurred for decades in Weld County, however in recent years production has increased exponentially due to the introduction of horizontal drilling. Weld County also has many small and large businesses located in the unincorporated portion of the County. This diverse economy impacts the County road system and are continually difficult to accommodate both physically and financially. As a result, ongoing growth and development will continue to increase traffic demands on the County's roadway network. This 2045 Transportation Plan outlines the strategies that Weld County is implementing and will implement in the future to keep up with the transportation needs of the traveling public. This plan will attempt to address how Weld County intends to address the traffic increases associated with rapid population growth expected in the region. As a part of this planning effort, Weld County has developed a list of transportation related projects that are both financially feasible, as well as necessary in order to accommodate future traffic volumes. The project list in this plan outlines Weld County's transportation needs over the next 25 years and was developed through indepth review by technical staff, and through the development of a traffic forecast model that encompasses Weld County roadways. Unincorporated Weld County has a vast roadway network that includes 743 miles of paved roads, approximately 2,173 miles of gravel roads, 447 bridges, and thousands of culverts, all maintained by the Weld County Public Works Department. This plan is necessary to ensure that improvements to the transportation facilities in the County are cost effective and are financially feasible through long-term planning as well as the preservation of ROW. #### **PURPOSE** The Weld County 2045 Transportation Plan serves as an integral part in the decision-making process for Weld County staff and elected officials. The primary purpose of this document is to provide technical information that can be used as a basis for formulating transportation related policies. To ensure the sustainability of Weld County's quality of life, this plan shall consider preserving the rural character, while providing strategies that sustain urban development. # INCORPORATED MUNICIPALITIES AULT, BERTHOUD, BRIGHTON, DACONO, EATON, ERIE, EVANS, FIRESTONE, FORT LUPTON, FREDERICK, GARDEN CITY, GILCREST, GREELEY, GROVER, HUDSON, JOHNSTOWN, KEENESBURG, KERSEY, LASALLE, LOCHBUIE, LONGMONT, MEAD, MILLIKEN, NEW RAYMER, NORTHGLENN, NUNN, PIERCE, PLATTEVILLE, SEVERANCE, THORNTON, TIMNATH, AND WINDSOR. or formulating COUNTY 2045 TRANSPORTATION COUNTY 2045 TRANSPORTATION PLAN IS TO PROVIDE A COORDINATED COUNTY-WIDE ROAD SYSTEM THAT MOVES PEOPLE AND GOODS IN A SAFE, ECONOMICAL, AND EFFICIENT MANNER. MISSION STATEMENT The focus of the content in this plan is to provide guidance for future transportation development in Weld County, however there are multiple topics that will be covered throughout the text. Within the County boundaries reside thirty-two incorporated municipalities, all having their own unique identity. Weld County's diversity provides the residents an abundant amount of choices and opportunities for homes, businesses, recreation, and leisure activities. Many of these Weld County communities have adopted transportation plans of their own. Weld County reviewed these documents to ensure a regionally coordinated implementation strategy recognized County-wide for compatibility and future improvements. As a result, this regional outreach hopes to encapsulate a balanced County-wide transportation system, uniting the entire region. There is a substantial relationship between transportation and land use, which is true for both rural and urban areas. By coordinating transportation planning and land-use planning, multiple benefits are revealed through effective utilization of transportation resources. Such
benefits include improved travel choices and options, reduced road network demands and VMT, less time spent driving, increased community health and active living, economic vitality, and improved air quality. A comprehensive transportation approach can be employed through development design standards, programs, and policies that support a wider variety of transportation choices. The purpose of this 2045 Transportation Plan is to summarize existing transportation conditions and recommend policy, funding, and roadway development for Weld County through the 2045 planning horizon. This timeline supports current travel modeling efforts of NFRMPO, DRCOG and CDOT. The most recent Weld County Comprehensive Plan update was completed in conjunction with this plan as well. The 2045 Transportation Plan will be an extension of the Comprehensive Plan focusing on basic travel characteristics unique to Weld County. # UNINCORPORATED COMMUNITIES BARNESVILLE, BRIGGSDALE, BUCKINGHAM, CAMFIELD, CARR, DEARFIELD, EAST EATON, ESPANOLA, EVANSTON, GALETON (ZITA TOWN), GILL, HARDIN, HEREFORD, KEOTA, KERSEY COLONY, LUCERNE, NORTH JOHNSTOWN, PEACEFUL ACRES, POUDRE CITY, PULLIAM, PURCELL, PURITAN, ROGGEN, SEBOLD, ST. LOUIS WESTERN COLONY, STONEHAM, VOLLMAR, UNION COLONY, AND WATTENBERG #### BACKGROUND In 1866, Section 2477 of the Revised Statutes of the United States provided: "The right of way for the construction of highways over public lands not reserved for public uses is hereby granted". It was also known as the Mining Act and the Canal Act. In 1885 an Act by the Colorado General Assembly gave the right to County Commissioners to declare any section line or township line in the public domain a public highway. On October 12, 1889, the BOCC of Weld County declared all section and township lines in the public domain of the United States in Weld County to be public highways. This order was recorded at the Clerk and Recorders Office in Book 86 at page 273. With this order, 60' of ROW (30' on each side of the section or township line) was reserved as long as the land was still in the public domain as of October 12, 1889. Lands excepted from this are in railroad sections, school sections, and lands patented prior to the year 1889. Fast forward nearly a century, and in 1961 the Weld County Subdivision Code was developed. This code referred to a road classification system in the County, and called out arterial, collector and local roads. The arterial road classification had 100 feet of ROW total, instead of the 140 feet that the County currently identifies. ROW for collector and local roads have been left unchanged. This was really the first time that future roadway planning was done in Weld County in terms of planning for roadway capacity expansion for County roads. The 1973 Weld County Comprehensive Plan included a map that classified specific roads and referred to the roadway classifications. This thoroughfare plan contained classifications that include freeways, expressways, rural expressways, arterial, rural arterial, collector, and local. The amount of ROW for each classification went from 250 Figure 2: Thoroughfare Plan (1973) feet for a freeway, down to 60 feet for a local road. These early references to ROW helped to create a system that allows Weld County to maintain and improve county roads in a costeffective way. Staff at the time developed these plans in order to ensure that the County would continue to have the ability to widen roads when traffic volumes increase beyond the current roadway capacity. Figure 3: Road Classification Map (1995) 1995 **functional** In new classification map was created. This map served as a component of the 1995 Weld County Comprehensive Plan. This map was an update of the previously adopted Thoroughfare Plan. Since 1995 considerable have occurred, changes necessitating a review and revision of the County's road classification plan and road cross-sections. In the late 1990's, Weld County was experiencing significant growth pressures by new residential, commercial and industrial development. To address these growing demands, the County pursued implementing a road impact fee. Impact fees are one of the most direct ways for local governments to require new developments to pay their pro-rata share of the cost of new infrastructure facilities required to serve that development. The charges are typically assessed based on a standard formula and are collected at the time of building permit issuance. 2001, Duncan and Associates prepared an update of the road impact fees in the Southwest Study Area. The update was limited to recalculating the impact fees for a redrawn Southwest service area, which excluded all the non-participatina municipalities. In 2002, Duncan and Associates in association with Felsburg, Holt and Ullevig prepared a County-Wide Road Impact Fee Study. Like the previous studies, the Countywide study was based on a demand-driven model. The difference with this study was the funding of capacity-expanding improvements within the assessment districts on major roadways. For the purpose of the impact fee study, these major roadway systems were classified as major arterial roads. Weld County Public Works began performing corridor studies in 2002. The intent of the corridor studies was to refine the alignment or geometry problems associated with roadways that have alignment issues. Weld County has conducted several corridor studies. The BOCC currently recognizes the following studies: - High Plains Boulevard I-25 Parallel Arterial Corridor Study - Weld/Adams County Line Crossroads Alignment Study - WCR 49/Imboden Alignment Study In 2011, the Weld County 2035 Transportation Plan was adopted by the BOCC. The plan set up a method for developing, implementing and updating a functional classification map. The plan built on methods that were done in the past but created a clear process to be utilized by staff. Since the 2035 Transportation Plan was adopted, Weld County Figure 4: Functional Classification Map (2011) integrated corridor studies into the functional classification map. The functional classification map divides roads into four categories, much like the earlier roadway classification maps. Each classification refers to the amount of future ROW that is reserved. County Highway refers roads that designated as such by the State of Colorado. For arterials, 140 feet of total ROW is called out. This amounts to 40 feet of future ROW on each side of the road. Collector roads have a total of 80 feet of ROW, so 10 feet of future ROW on each side of the existing ROW. Local roads have 60 feet of ROW with no future ROW called out. The BOCC has updated the functional classification map two times since the initial adoption of the map in 2011. The map should be updated every two years in order to remain relevant to current conditions. #### **DEMOGRAPHICS** The Front Range of Colorado continues to see large population increases year after year. Projections into the future show no slowing down for growth in the area. As of 2020, approximately 324,429 people call Weld County home, which represents 5.7 % of the total population of Colorado. The Colorado State Demographic Office forecasts that the 2045 population for Weld County will be approximately 644,943. CDOT's FOCUS traffic model has a similar projection, with an expected population of 647,692. Both forecasts predict that population in the next 25 years will double in Weld County. With this massive growth, public officials will need to utilize all available tools to mitigate traffic concerns. The current roadway facilities will not be adequate in terms of efficient movement of people and freight. The population density changes of Weld County will be urban-centered growth, with currently vacant agricultural lands one of the primary locations for growth. As seen in **Figures 5 and 6**, population increases will be greatest in the region between Greeley, Loveland and Fort Collins, as well as along the I-25 corridor. Population growths are estimated at approximately 3% per year over the next Figure 5: 2015 Population Density Figure 6: 2045 Population Density 25 years. One reason for the growth is that Weld County has a large amount of agricultural land available for development in comparison to Larimer and Boulder Counties. The trend of people living in Weld County and commuting to other counties for work is expected to increase in the future. During the timeframe of this plan, employment in Weld County is expected to increase at a 2% annual rate. According to estimates, County employment will reach 223,000 in 2045. **Table 1: Projected Population Growth** | YEAR | POPULATION | PERCENT
CHANGE | AVERAGE ANNUAL INCREASE | |------|------------|-------------------|-------------------------| | 2020 | 333,004 | - | - | | 2025 | 383,958 | 15.3% | 3.06% | | 2030 | 443,431 | 15.49% | 3.1% | | 2035 | 505,828 | 14.07% | 2.81% | | 2040 | 569,559 | 12.6% | 2.52% | | 2045 | 644,943 | 13.24% | 2.65% | Figure 7: 2015 Employment Density Figure 8: 2045 Employment Density This increase in employment is not large enough jobs to keep up with the population growth, so it is likely that many more people will be commuting outside of the County for work. Weld County is positioned to be a huge laborshed that will provide many workers to Fort Collins, Boulder, and the Denver Metro Area, among other locations. The additional commuters will put a strain on transportation corridors. regional Measures to mitigate the additional commuter traffic are needed. Figures 7 and 8 show employment density in Weld County for 2015 and 2045. As you can see, for the most part employment increases are centered around major transportation corridors. Weld County will continue to work with nearby cities, and other agencies to counties. develop strategies to ease traffic congestion concerns in the region. Weld County is the most agriculturally productive county in the state according to the USA Census of
Agriculture. **Table 2** lists Weld County Employment by sector, between the years 2010 and 2018, according to the State Demography Office. As you can see, government, agriculture, food service, health services, retail, manufacturing, and construction employ the highest numbers of people in the County. Table 2: Jobs by Sector | SECTOR | 2010 | 2018 | %
CHANGE | |---|---------|---------|-------------| | AGRICULTURE | 6,006 | 6,593 | 10% | | MINING | 3,339 | 8,899 | 167% | | UTILITIES | 266 | 402 | 51% | | CONSTRUCTION | 9,169 | 14,808 | 62% | | MANUFACTURING | 10,614 | 14,052 | 32% | | WHOLESALE TRADE | 3,547 | 4,780 | 35% | | RETAIL TRADE | 9,410 | 12,748 | 35% | | TRANSPORTATION AND WAREHOUSING | 3,132 | 5,638 | 80% | | INFORMATION TECHNOLOGY | 1,081 | 1,016 | -6% | | FINANCE ACTIVITIES | 3,952 | 3,736 | -5% | | REAL ESTATE | 2,997 | 4,028 | 34% | | PROFESSIONAL, SCIENTIFIC/TECHNICAL SERVICES | 4,167 | 5,870 | 41% | | MANAGEMENT OF COMPANIES, ENTERPRISES | 1,112 | 1,837 | 65% | | ADMINISTRATIVE SUPPORT AND WASTE MANAGEMENT | 5,289 | 7,882 | 49% | | EDUCATION | 908 | 1,637 | 80% | | HEALTH SERVICES | 9,290 | 10,987 | 18% | | ARTS, ENTERTAINMENT AND RECREATION | 1,526 | 2,085 | 37% | | ACCOMMODATION AND FOOD SERVICES | 6,011 | 8,903 | 48% | | OTHER SERVICES EXCEPT PUBLIC ADMINISTRATION | 6,627 | 8,273 | 25% | | GOVERNMENT | 16,539 | 17,894 | 8% | | TOTAL | 104,982 | 142,067 | 35% | #### PLANNING PROCESS Preparation and plan assessment for the 2045 Transportation Plan update began in August of 2019 with an assessment of the 2035 Transportation Plan. Staff reviewed the plan to determine how the existing plan has been utilized, and how improvements can be made with the updated plan. The project team looked at existing conditions and projections for, among other things, traffic and population growth. After initial assessment, staff determined that a traffic demand model to incorporate into the 2045 plan would be extremely beneficial to staff for a variety of reasons. The traffic demand model would be utilized to analyze existing conditions and transportation conditions through the year 2045. Alliance Transportation Group was hired by Weld County to develop a traffic demand model. In mid-2020, Weld County began its public outreach in order to gather information and opinions from residents in Weld County. County staff gathered concerns and priorities of the public regarding transportation. Responses from the 2045 Transportation Plan survey can be found in the next few pages. Staff reviewed the outcomes of the survey, in order to develop this plan in a way that encompassed the needs and concerns of the public. The draft Transportation Plan was then posted on the Weld County website, and additional input from the public, County municipalities, and other local agencies was obtained during the review period. After a final draft of the plan was complete, staff presented the plan to the Weld County Planning Commission. After gaining approval from the Planning Commission, the plan was reviewed by the BOCC and adopted in November of 2020. #### RESULTS FROM PUBLIC OUTREACH SURVEY #### **TOP COMMENTS WE RECEIVED:** **IMPROVE EXISTING PAVED ROADS** **IMPROVE UNPAVED ROADS** **IMPROVE OVERALL ROAD SAFETY** **TOO MANY LARGE TRUCKS** ADD MORE PUBLIC TRANSPORTATION OPTIONS TOO MUCH TRAFFIC **ADD MORE BICYCLE LANES/TRAILS** # AREAS OF TRAFFIC CONGESTION ACCORDING TO SURVEY RESULTS: **WELD COUNTY ROAD 74** **WELD COUNTY ROAD 13** **WELD COUNTY ROAD 1** **WELD COUNTY ROAD 17** **WELD COUNTY ROAD 35** **WELD COUNTY ROAD 2** STATE HIGHWAY SYSTEM #### POLICIES AND GUIDING PRINCIPLES #### TP.GOAL 1. DEVELOP AND MAINTAIN A SAFE, EFFICIENT ROADWAY NETWORK. TP.Policy 1.1. Ensure County road facilities are constructed and maintained in accordance with the functional classification plan, as well as adopted County standards in the Weld County Engineering and Construction Guidelines. TP.Policy 1.2. Ensure ROW is dedicated or reserved for public use when development occurs. TP.Policy 1.3. Strive to maintain a level of service (LOS) C or better for the overall roadway network. TP.Policy 1.4. Avoid or minimize potential conflicts among different transportation modes, such as vehicular and freight crossing points. TP.Policy 1.5. Design and construct road networks that provide best practices for improvements and safety, i.e. shoulders, access, guardrails, etc. TP.Policy 1.6. Prioritize new construction projects based on safety, connectivity, access, and traffic volumes. TP.Policy 1.7. Work with utility companies to develop a utility clearance map to identify potential conflicts for safe construction in the ROW. TP.Policy 1.8. When a signalized intersection is warranted on the county road system, a cost-benefit ratio comparison to constructing a roundabout should be considered prior to installing a traffic signal. TP.Policy 1.9. A county-wide trail system should be promoted to offer additional transportation options and for recreational purposes. TP.Policy 1.10. Implement and maintain urban and rural cross-sections that are consistent with the functional classification plan, as amended. TP.Policy 1.11. Create access control plans for all Weld County roads with arterial classifications and enforce access safety criteria as adopted in the Weld County Code. TP.Policy 1.12 Consider a multi-modal transportation system that assists in reducing congestion on the roadway network. TP.Policy 1.13. In urban areas, promote on-road bike lanes for cyclists, and off-road or detached sidewalks/side path trails for pedestrian and bicyclists serving higher population densities. In rural areas, promote bikeable shoulders on roadways whenever feasible. TP.GOAL 2. ENCOURAGE PARTNERSHIPS WITH MUNICIPALITIES, NEIGHBORING COUNTIES, THE COLORADO DEPARTMENT OF TRANSPORTATION, NORTH FRONT RANGE METROPOLITAN PLANNING ORGANIZATION, UPPER FRONT RANGE TRANSPORTATION PLANNING REGION, DENVER REGIONAL COUNCIL OF GOVERNMENTS, SPECIAL DISTRICTS, AND PRIVATE ENTITIES TO COORDINATE TRANSPORTATION IMPROVEMENTS AND LAND USE STRATEGIES, AND TO ENHANCE INTERAGENCY COMMUNICATION. TP.Policy 2.1. Continue support and collaboration of transportation coalitions to further improvements of regional transportation corridors. TP.Policy 2.2. Improve communication and collaboration with local agencies to create partnership opportunities on construction projects. TP.Policy 2.3. Develop a regional framework approach to constructing Weld County's transportation system by considering a macro perspective during the decision-making process. TP.Policy 2.4. Hold an annual Weld County Public Works conference meeting with Weld County communities to discuss capital improvement projects and current maintenance techniques. TP.Policy 2.5. Continue participation in regional transportation organizations that support the goals of the Weld County Transportation Plan and encourage partnerships with other local government agencies to provide a sustainable transportation system. TP.Policy 2.6. Promote the Weld County Smart Energy Plan, which supports efforts of utilizing natural gas as an alternative transportation fuel, as well as converting vehicles to bi-fuel or dedicated natural gas. TP.Policy 2.7. Support the Northern Colorado Bike and Pedestrian Collaborative to improve bicycle and pedestrian facilities within the County. TP.Policy 2.8. Coordinate with municipalities regarding transportation infrastructure improvements associated with new land use development within the County. # TP.GOAL 3. IMPROVE THE MOVEMENT OF PEOPLE AND GOODS BY ENHANCING ARTERIAL ROADWAYS. TP.Policy 3.1. Where appropriate, consider paved shoulders, auxiliary lanes, and other appropriate design considerations to enhance the safety and capacity of County roads. TP.Policy 3.2. Plan for future regional multi-modal transportation needs by providing connectivity between the communities. TP.Policy 3.3. Enforce access management guidelines and policies to ensure the functional integrity of the county road network is maintained according to its planned function. Continue development and support for access control plans throughout Weld County. TP.Policy 3.4. All County infrastructure should be designed and constructed in accordance with Weld County Engineering and Construction Guidelines. TP.GOAL 4. SUPPORT GOOD LAND USE PLANNING POLICIES BY COORDINATING LONG-RANGE AND TRANSPORTATION PLANNING DECISIONS TO ENSURE NEW DEVELOPMENT MAINTAINS AN ADEQUATE LEVEL OF SERVICE BY PAYING ITS SHARE OF IMPROVEMENTS TO THE TRANSPORTATION NETWORK. TP.Policy 4.1. Adhere to the Adequate Public Facilities Ordinance (APFO) to ensure funding mechanisms for transportation are sufficient to maintain the existing level of service. Should a proposed development reduce the roadway level of service then improvements should be made to the site to keep the roadway network at the County's approved roadway level of service. More specifically, during the development review process, as a condition of land development, require construction of public improvement facilities in proportion to their respective traffic demand impacts and land development patterns. TP.Policy 4.2. Maintain a five-year Capital Improvement Plan (CIP), which coordinates with the short- and long-range improvements identified in the Weld County Transportation Plan. The CIP is updated annually. TP.Policy 4.3. Update the Road Impact Fee (RIF) study every ten years to assure new development contributes its fair proportional share of the cost of providing the capital improvements required to provide new development with the same level of service currently enjoyed by existing development. TP.Policy 4.4. Whenever possible, the County should consider projects that assist with reducing Vehicle Miles Traveled (VMTs) including projects that encourage a variety of transit options, such as but not limited to: Park-n-Ride Facilities, Bus Rapid Transit, High Occupancy Vehicle (HOV)
lanes, bicycle and/or "Micromobility solutions", and Transit Oriented Developments (TOD), etc. TP.Policy 4.5. Maximize the compatibility of roads, streets, and highways with adjacent land uses. TP.Policy 4.6. Recognize the value other transportation modes offer, such as airplanes, trains, and buses, and encourage the continued use through compatible surrounding land uses. TP.Policy 4.7. Develop a sustainable transportation system that incorporates land use, transportation, economics, and cost benefit ratios into the decision-making process. TP.Policy 4.8. Future developments may need to make on-site and off-site roadway improvements as appropriate, and the County should consider the implementation of reimbursement agreements for off-site improvements made beyond the limits of the site-specific development proposal, where appropriate. TP.Policy 4.9. Promote bikeways and sidewalks in new developments to link residential and employment areas, commercial centers, recreational and open space areas and educational facilities. TP.Policy 4.10. New public roads should be accepted in accordance with Weld County's road acceptance policy outlined in Weld County Code. # TP.GOAL 5. IMPLEMENT THE TRANSPORTATION PLAN IN A WAY THAT CONSIDERS OTHER TRANSPORTATION AND COMPREHENSIVE PLANS. TP.Policy 5.1. Review the functional classification plan map annually to ensure the rights-of-way are adequate to facilitate capacity needs for new development and meet travel demand. The functional classification map serves as the County's official roadway plan. TP.Policy 5.2. Utilize the Weld County Transportation Plan as a needs-based planning tool providing a resource to elected officials, staff, and county residents by identifying the most cost-effective transportation infrastructure and services. TP.Policy 5.3. Support economic development outreach through transportation planning efforts. TP.Policy 5.4. Update the Transportation Plan as necessary. # TP.GOAL 6. UPDATE THE CAPITAL IMPROVEMENTS PLAN AND IMPLEMENT STRATEGIES THAT RECOGNIZE FUNDING LIMITATIONS AND SEEK ALTERNATIVE FUNDING SOURCES. TP.Policy 6.1. Pursue state and federal grant funds to assist in constructing new capital improvement projects. Any new transportation facilities should be designed to minimize future maintenance costs without sacrificing safety. TP.Policy 6.2. The County should emphasize maintenance and upgrading of existing transportation facilities over the provision of new facilities to protect its existing investment. TP.Policy 6.3. Work with adjacent counties, such as Boulder, Larimer, Morgan, and Adams to consider cost sharing projects which provide regional transportation services, for example, a fixed inter-regional transit route between counties. TP.Policy 6.4. Promote actions that improve transportation system efficiency using Transportation Demand Management techniques, such as promoting alternative modes like transit or increasing vehicle occupancy through rideshare programs, such as VanGo. TP.Policy 6.5. Support private and public partnerships to construct public improvements for all modes of transportation. TP.Policy 6.6. Encourage sustainable planning and construction strategies with all types of capital improvements. # TP.GOAL 7. INVEST IN INFRASTRUCTURE IMPROVEMENTS THAT STRENGTHEN THE FREIGHT TRANSPORTATION CORRIDORS TO ENSURE ECONOMIC VITALITY. TP.Policy 7.1. Continue support of the existing freight rail corridors and encourage the development of passenger commuter rail as a future transportation mode used in accordance with the recommendations from the North I-25 EIS. TP.Policy 7.2. Enhance the safety of the freight corridors within the county by adding generous shoulders and auxiliary turn lanes when feasible. TP.Policy 7.3. Construct freight corridors to withstand a high level of truck traffic. #### ROADWAY CONDITIONS Before staff and elected officials can determine what improvements are needed, an evaluation must be completed on the current roadway system. The process of inventorying existing conditions began with assessing the entire transportation system, so we can better understand its overall function in Weld County. The starting point to accomplish this task began with collecting and reviewing all the local jurisdictions transportation plans, including those adjacent to the County. By analyzing these documents, staff could determine current system deficiencies as well as interpret future needs over a twenty-five-year planning period. Weld County's roadway network is the primary means of transportation for this region. The federal and state highway systems serve as the backbone of this roadway network. The Weld County Public Works Department provides for the maintenance and construction of roads, bridges and storm drainage facilities in public rights-of-way throughout the unincorporated County. The Department is comprised of nine separate divisions including: Administration, Bridge, Engineering, Gravel Roads, Maintenance Support, Mining, Pavement Management, Trucking, and Weeds. The County maintains approximately 2,917 miles of road. Of which, 2,174 miles are gravel and 743 miles are paved. Additional road miles exist in the communities and state highway system. Weld County contains both urban and rural areas on some rolling terrain, but County-wide the terrain has minimal grade changes. Most county roads located in the urban areas are paved, and conversely many of the rural roads remain gravel. Overall, approximately 25% of all Weld County roads are paved. Arterial roads comprise only 8% of the County roads (not including state highways). Collector roads comprise 15% of the County system and more than one-half of these are paved. Most of the gravel collector roads are in the northeast portion of the County. Approximately 77% of county-maintained road miles are local and gravel in classification and surface. #### TRAFFIC VOLUMES Traffic volumes signify the relative usage of a roadway. When compared to roadway capacity estimates, traffic volumes also reveal how a road is functioning based on LOS, and if improvements to increase capacity are necessary. **Figure 9** shows the range of existing traffic volumes for all county roads. Specific road counts can be found on the roadway inventory in **Appendix A**. AADT is a commonly utilized measurements of traffic volume. AADT is the annualized total number of vehicles passing a certain point in both directions in a 24-hour period. Weld County maintains an extensive traffic count database, which includes vehicle classification, showing truck volumes, as well as 85th percentile speeds for the roadway that is being measured. When evaluating traffic volumes, the County uses data over a three-year time period. This allows staff to analyze any potential irregularities that may have occurred, such as road closures, construction projects, or new development in the area. In Weld County, the heaviest traveled road that is currently maintained by the County is WCR 74 west of Severance, which carries roughly 14,000 vpd. WCR 49 also sees very large volumes of traffic since improvements were made to the corridor. Commercial trucks make up much of the traffic on WCR 49, as seen in **Figure 9** below. Figure 9: Most Traveled County Roads (2020) VMT is a quantitative measure tracking the usage of the County roadway system. VMT is calculated by multiplying trips by miles traveled. Weld County Public Works does not keep records of VMT, unless a specific scenario warrants it. #### LEVEL OF SERVICE A roadway's capacity can be defined as the maximum traffic volume that can be accommodated at a desired LOS. Capacity is defined differently for different roadway types, such as gravel versus paved roads, as well as the amount of traffic flow and number of lanes. Most Weld County roads contain two travel lanes. Figure 10: LOS Diagram Free flow movement Speed Limit Unsignalized Intersection Delay ≤10 sec • V/C Ratio < 0.6 Reasonably free flow; only slightly restricted •Speeds beginning to be restricted by traffic B conditions, but close to the speed limit. Unsignalized Intersection Delay 10-15 sec • V/C Ratio 0.6 - 0.7 •In stable flow zone; somewhat restricted • Most drivers are restricted in the freedom to select their own speeds. • Unsignalized Intersection Delay 15-25 sec • V/C Ratio 0.7 - 0.8 Approaching unstable flow; noticeably limited Significantly slower than speed limit, drivers have little freedom to select their own speeds. • Unsignalized Intersection Delay 25-35 sec • V/C Ratio 0.8 - 0.9 Unstable flow • Significantly slower; may be short stoppages • Unsignalized Intersection Delay 35-50 sec • V/C Ratio 0.9 - 1.0 Almost none; unacceptable congestion; forced Significantly slower; stop-and-go Unsignalized Intersection Delay ≥50 sec • V/C Ratio > 1.00 nationally The accepted source for highway capacity evaluations is the Highway Capacity Manual. Weld County also uses the AASHTO Green Book, and the CDOT manual to assist with capacity calculations. Several indices are used to evaluate vehicular traffic flow along roadways and through intersections. The three most widely used are LOS, V/C, and vehicle delay in minutes. LOS is a transportation term that measures the level of congestion on a roadway. This roadway efficiency classification is specified by a designation letter on interval scale consisting of six levels. These levels are graded from an optimal LOS A (free flow) to an unacceptable LOS F (highest levels of congestion and corrective action warranted). Intermediate grades between level A and F designate decreasina efficiency. roadway This classification is consistent with the recommendations of the Highway Capacity Manual. For example, in rural areas, a LOS C is desirable for arterial and collector roads. However, LOS D is practical where unusually high traffic volumes exist or where terrain is rolling or mountainous. **Figure 10** displays the many factors that LOS considers, including vehicular delay,
maneuverability, driver comfort, congestion delay, and travel speed. LOS is normally reported for rush hour of a typical weekday, also known as peak hour. Weld County strives to maintain LOS C or better for the overall roadway network. LOS standards cannot always guarantee actual system performance at all locations. These standards assist in identifying appropriate roadway improvement needs but need to be balanced with other considerations such as funding availability, environmental issues, and other constraints. **Figure 11** shows the LOS for County maintained roads. For system-wide evaluations, the V/C ratio is an appropriate means of analyzing roadway performance. The V/C ratio compares the capacity of a road, as it is designed and constructed, to the volume of traffic it carries, or is projected to carry in the future. As volume increases on a roadway facility, speed typically decreases, freedom to maneuver decreases due to the presence of more vehicles, and driver comfort decreases due to the need to watch the movement of more vehicles to maintain safe spacing. It is anticipated that roadways will experience higher V/C ratios during peak hour commuting periods and, conversely, lower V/C ratios during non-peak travel times. The daily capacity characteristics mentioned in the previous section are the basis for the V/C ratios. These ratios are used to determine needed roadway improvements. Road segments with V/C ratios greater than one are recommended for improvements. The last operational evaluation measure is delay. Delay measures the quality of service provided to the road user, which includes driver discomfort and frustration, fuel consumption, and lost travel time. Besides the operational evaluation measures, there are also qualitative elements of a transportation circulation system. They include arterial continuity, network redundancy, and hazardous areas. Arterial continuity implies it is highly desirable to provide as much continuity to the network as possible. It is preferable to extend arterial corridors even in the absence of high traffic volumes. At a minimum, such extensions should be made to interconnect facilities that have an equal or higher functional classification. Another element of network evaluation is network redundancy. Just as the name implies, this is the level of redundancy provided by the network. It is preferable to have an overall system plan that provides alternative routing between various origin and destination pairs, rather than a single route that can shut down a major portion of the system should an incident occur. Weld County's arterial roads provide network redundancy to the State Highway system by paralleling these facilities, as well as having multiple interconnections which allow traveler route choices. The principle of network redundancy applies to both the lower functional classifications (collector and local roads) and the higher arterial functional class. Hazardous or conflict areas is another set of system-level evaluation measures reflect the need to improve certain corridors or spot locations for the purpose of eliminatina or reducing hazardous characteristics. These improvement recommendations include both high- and low-volume roads, as well as corridors exhibiting deficient design characteristics, even if excessive accident rates have not yet occurred. Of significance are those areas where incompatible travel modes cross each other. You can see this interface in Weld County at railroad crossings. Figure 11: LOS Map #### CRASH DATA ANALYSIS Weld County Public Works staff performs a crash analysis on the County maintained roadway system each year in preparation of the CIP discussion with the BOCC. This crash analysis, also known as a "Hot spot analysis", looks at intersections and sections of roads, maintained by Weld County, that see a high number of crashes. Crash records reported by the Colorado State Patrol, municipal police departments, and the Weld County Sherriff's Department are compiled through DiExSys software, and an analysis is performed to identify locations that have significant concentrations of crashes. Staff relies heavily on the DiExSys software when reviewing crash history. Figure 12: 2019 Crash Analysis Map A review of the crash records is performed categorizing the crashes into property damage only accidents, injury accidents, and fatal accidents. For the of analysis, staff eliminates sake accidents that occurred when the driver was under the influence of drugs or alcohol. Utilizing the DiExSys program, and GIS, staff can look at the relationships of the crashes, as well as the factors causing the crash. The DiExSys program also allows for the ability to utilize safety performance functions to determine if accidents in a location are higher than what would be expected in that location. This is based on layout of the intersection or road, location, type of facility and traffic volume. DiExSys performs probability functions determine a proper course of action as far as improvements to infrastructure. Using this software, staff can recommend improvements that are cost effective, as well as effective at reducing crashes in these hazardous locations. **Figure 12** shows the number of crashes at intersections and along roadway corridors. Weld County averages around 6,600 crashes per year, so it is vitally important to understand the causation, and look at the improvements that can be made to reduce the number of crashes on County roads. An on-site review of these crash locations is also performed to determine any improvements that can be made to the area to mitigate the hazardous location. Staff utilizes all the tools possible when looking at the causation of crashes. Reviewing the crash sites in the future is another one of these tools. During the CIP discussion between Public Works staff and the BOCC, a determination is made on which infrastructure should be improved within the next five years. A key factor in terms of improvement priority is safety. Public Works staff relies heavily on the crash data analysis when making infrastructure improvement recommendations to the BOCC. **Figure 13** illustrates individual County-wide crash locations from 2015-2019, as well as the crash evaluation that is used in the Hazard Elimination Analysis. **Table 3** shows the top ten intersections with the highest adjusted ranking according to DiExSys in Weld County for 2015-2019. Many of these intersections are included on the 5-year CIP list, and four of the intersections on the list will be improved to a roundabout. Table 3: Top Ten Crash Locations (2015-2019) | INTERSECTION | DIEXSYS
RANKING | NUMBER OF
CRASHES | NUMBER
OF
FATALITIES | NUMBER
OF
INJURIES | CURRENT AADT
APPROXIMATE
(2020) | |-------------------|--------------------|----------------------|----------------------------|--------------------------|---------------------------------------| | WCR 43 @ WCR 66 | 1 | 9 | 1 | 4 | 2300 | | WCR 13 @ WCR 34 | 2 | 13 | 2 | 18 | 5800 | | WCR 31 @ WCR 74 | 3 | 12 | 0 | 13 | 7700 | | WCR 51 @ WCR 60.5 | 3 | 9 | 0 | 4 | 4300 | | WCR 33 @ WCR 74 | 5 | 9 | 1 | 8 | 5300 | | SH 52 @ WCR 37 | 6 | 20 | 1 | 10 | 12100 | | SH 66 @ WCR 21 | 7 | 21 | 0 | 11 | 12100 | | WCR 17 @ WCR 54 | 8 | 16 | 0 | 15 | 11700 | | WCR 41 @ WCR 66 | 9 | 2 | 0 | 1 | 1400 | | WCR 13 @ WCR 6 | 10 | 6 | 0 | 7 | 8800 | Figure 13: Crash Locations (2015-2019) #### MULTIMODAL FACILITIES Vehicles are not the only form of transportation operating in Weld County. Other transportation services include Air, Rail, Public Transit, Bicycle, and Pedestrian. **Figure 14** illustrates the railroad and air transportation facilities operating in Weld County. **Figure 15** illustrates transit routes in Weld County. **Figure 16** shows the regional trails in Weld County. #### AIR TRANSPORTATION The Greeley-Weld County Airport is one of the busiest general aviation airports in Colorado routinely accommodating approximately 110,000 takeoffs and landings per year. The airport provides an economic boost to Weld County with the more than \$94 million in revenue it produces annually. The airport is classified as a general utility airport, capable accommodating all types of general and business aviation aircraft users. During 1921-1942, the Airport existed at two different sites and was called the Greeley Municipal Airport. In 1943, The Greeley-Weld County **Airport** moved to its present location, within Greeley city limits along the north side of SH 263. Today, the Greeley-Weld County Airport is an independent governmental entity, owned and operated by the Greeley-Weld County Airport Authority. The Airport Authority was formed in 1978 by the City of Greeley and Weld County and is governed by a board of commissioners. A significant asphalt runway project was completed in 2000. The Airport Authority constructed runway 17/35, which measures 10,000' long by 100' wide. This expansion project also included a new 6,000 square foot terminal and administration building, as well as additional infrastructure improvements. The Airport Authority also rehabilitated Runway 10/28 measuring 5,800' long x 100' wide. Figure 14: Railroad and Air Transportation Facilities In 2004, the Airport Board of Commissioners adopted the Airport Master Plan and in 2014 the plan was updated. The focus of this plan addressed those undeveloped areas of the airport. Approximately 42 acres of land on the northeast portion of the airport was identified for future priority development, in the same general area previously occupied by runway 17/35 before it was closed and demolished. Additionally, the airport master plan identified an additional 40 acres of land for aeronautical development on the airport's east side, adjacent to WCR 47. In May of 2020 the airport adopted minimum standards and rules and regulations for the facility. In southwest Weld County, there is also a municipal airport located in Erie. Erie Municipal Airport
is owned and operated by the Town of Erie, and is located off SH 7, approximately three miles west of Interstate 25. The main runway is paved and is 4,700 feet long. The Easton/Valley View airport and Platte Valley airpark are privately owned and operated airport facilities within Weld County. There are also several other small private airports that help to support aerial spraying operations, as well as other uses. ### RAIL SYSTEM Historically, the Railroad Acts of the 1860's and 1870's gave railroads land to offset the costs of construction. They were originally given sections (one square mile tract) up to 20 miles from the main line track on each side, but later could receive extra sections of land to compensate for those sections that were already taken out of the public domain. This equated to every other section, mostly odd numbered sections. The railroad filed a map with the General Land Office showing the sections they claimed. Not all odd numbered sections were railroad sections. Since the map was filed considerably prior to 1889, the railroad sections are considered to have been taken out of the public domain and therefore not part of the 1889 Order of the BOCC discussed at the beginning of this plan. Today, the rail transportation system in Weld County primarily serves the purpose of moving freight. Union Pacific Railroad, BNSF Railway, and the Great Western Railway each operate rail lines in Weld County. Both BNSF and Union Pacific are considered Class 1 Railroads. Railroads are classified based on their annual operating revenues in 1991 dollars. According to the Surface Transportation Board, the classification is determined by comparing operating revenues for three consecutive years to the following scale: - Class I \$250 million or more - Class II \$20 million to \$250 million - Class III \$0 to \$20 million Great Western Railway is classified as a Class III railroad. **Table 4** summarizes the existing rail service providers and the approximate length of track within the County. **Table 4: Railroad Companies** | RAILROAD OWNER | RAIL SEGMENT | LENGTH
(MILES) | |------------------------|-------------------------------|-------------------| | BNSF RAILWAY | 1-76 Corridor | 45 | | UNION PACIFIC RAILROAD | Denver-Greeley-
Wyoming | 140 | | GREAT WESTERN RAILWAY | Greeley-Windsor-
Johnstown | 80 | Currently the only passenger train service traveling through Weld County is Amtrak's California Zephyr. The California Zephyr averages speeds of 55 mph and runs from Chicago to Emeryville, CA (San Francisco). Through Weld County the route parallels the I-76 corridor continuing to Denver's Union Station. Colorado's Southwest Chief and Front Range Passenger Rail Commission is currently tasked with facilitating the implementation and operation of future passenger rail along the Front Range. This railway would better connect Greeley and the rest of Northern Colorado to the Denver Metro Area, as well as Colorado Springs and Pueblo. With population increasing along the Front Range, high-speed rail is considered a valuable alternative mode of transportation that could take VMT off the existing roadway system. The proposed location of the rail in Northern Colorado is currently within the Great Western/Union Pacific rail corridor, or the BNSF rail corridor. Utilizing the existing track alignment in many areas is among one of the considerations in developing the passenger rail system. The Southwest Chief and Front Range Passenger Rail Commission is currently seeking input from the public on this plan. Weld County is actively involved in the development of the plan and is a member of the North Segment Coalition. ### TRANSIT SYSTEM Transit service in Weld County is primarily a demand-response transit service for rural Weld County residents, which connects outlying communities to Greeley by aiding elderly, disabled, low-income persons and the general public. Weld County is currently partnering with the NFRMPO to improve these essential services via a one call/one click program. This program would allow rural residents the opportunity to call and schedule transportation to services they need. The Weld County Mobility Committee meets every other month and assists in developing and implementing this program. Serving residents and visitors of the cities of Greeley and Evans is the Greeley Evans Transit Program (GET). GET is an essential service for many who rely on the system to travel within the two cities. In January of 2020, GET launched the Poudre Express, a regional commuter route that connects Greeley and Evans to the Town of Windsor and the City of Fort Collins. Figure 15: Regional Transit CDOT has developed a transit system that connects Northern Colorado to Denver, and other communities throughout Colorado. Bustang allows many people that live along the Northern Front Range to commute to the Denver Metro Area. The Bustang program has been successful for CDOT and has led to the growth of the number of routes within the system. The program is another tool to help reduce traffic on existing roadways. #### BICYCLE AND PEDESTRIAN FACILITIES Within Weld County there are several trails that have been constructed, as well as some that are proposed. Regional trails, as seen in **Figure 16**, make up most of the rural bicycle and pedestrian facilities. The planned and constructed regional trails in Weld County consist of the 52-85 Trail, The American Discovery Trail, the Big Thompson River Trail, the Great Western Trail, the Little Thompson River Trail, the Pawnee Pioneer Trail Scenic Byway, the Poudre River Trail and the St. Vrain Legacy Trail. Weld County does not typically plan for bike lanes when constructing roadways, however many County Roads are constructed with generous shoulders, allowing for safe biking. For the most part, the individual municipalities designate bike routes, on-street striped bike lanes and off-road multi-purpose trails. Weld County is a member of the Northern Colorado Bicycle and Pedestrian Collaborative, which meets on a monthly basis. Northern Colorado communities utilize this forum to facilitate discussion on improving bicycle pedestrian and facilities in the region. The helps member group communities pursue state and federal funding opportunities. The group has assisted in developing the 2016 Non-Motorized Plan, which provides a summary the bicycle of and pedestrian infrastructure in the region. Figure 16: Regional Trails # HAZARDOUS MATERIALS CORRIDORS **Figure 17** shows Weld County's designated hazardous materials routes in red, and the designated nuclear and hazardous material routes in green. Hazardous materials (Hazmat) are defined as a substance or material which has been determined by the Secretary of Transportation to be capable of posing an unreasonable risk to health, safety, and property when transported in commerce, and which has been designated as hazardous under Section 5103 of federal hazardous materials transportation law. Nuclear materials are defined as a highway route-controlled quantity of radioactive materials in 42-20-402 CRS (Colorado Revised Statues). Drivers are required to stay on these routes, unless they meet the state and federal requirements to deviate from the route. Figure 17: Nuclear and Hazardous Materials Routes Weld County has significant oil well activity, and as a result, trucks carrying oil well production utilize nearly every road in the County. Therefore, on November 17, 2010, the BOCC passed a Resolution designating all County roads to be considered "local pick-up and delivery" routes for trucks carrying oil well production. # FREIGHT CORRIDORS The freight transportation system in the United States is the framework for economic growth. Maintaining and improving major transportation infrastructure is crucial to the economic growth within Weld County. The transportation of agricultural, oil and gas, and other goods ensures competitiveness of many different industries in the region. The most traveled freight corridor in Weld County is Interstate 25. This corridor is recognized as a part of the national primary freight system. Other crucial freight corridors that traverse Weld County, but are maintained by CDOT are Interstate 76, US Highway 85, US Highway 34, SH 14, SH 52, and SH 71. Weld County identifies certain corridors as freight routes as well, as seen in **Figure 18**. These corridors include portions of WCR 6, WCR 13, WCR 19, WCR 22, WCR 29, WCR 30, WCR 32, WCR 39, WCR 41, WCR 44, WCR 47, WCR 49, WCR 55, WCR 60.5, WCR 68, WCR 74, WCR 77, WCR 100, WCR 126, and WCR 390. Maintenance and improvements to these corridors is crucial in order to maintain the functional integrity of the roads so that industries can deliver their products to market. Weld County has identified these corridors as freight routes in order to assist in determining the best course of action when it comes to improving corridors that see a large volume of truck traffic. Design standards for these freight routes emphasize features that help to accommodate oversized, and overweight vehicles. These roads are prioritized when it comes to road widening projects to add shoulders. When feasible, lane widths are increased in order to accommodate oversized loads. Intersection improvements on these roads include generous turning radii, to accommodate large vehicles. When determining routes for special transport permits, County staff utilizes these freight routes whenever possible. Roads are only part of the equation when it comes to creating a system that delivers products to the consumer. Railroads, pipelines and airports also play a large role in delivering products. An efficient multi-modal freight network is essential to enhancing Weld County's competitiveness on many fronts. Weld County staff in conjunction with state transportation officials help to ensure that the transportation system in Weld County can meet the demand. **Figure 18: Freight Corridors** # WEATHER STATIONS
Weld County recently installed weather stations in 11 locations within the County. These devices allow County staff to have an accurate account of weather conditions throughout the County. This is critical when considering conditions during a severe weather event, such as a blizzard or flood event. The weather stations accurately measure temperature, precipitation, wind speed, direction of wind, barometric pressure, relative humidity, pavement temperature, and pavement condition. There is also a camera at each location, which gives a visual on the current weather conditions. In the future the public will also have access to this data, which allows everyone to know what the weather conditions are throughout the County. These weather stations are currently located at the following locations: WCR 32 and WCR 49 WCR 44 and WCR 49 WCR 60.5 and WCR 47 WCR 22 and WCR 41 WCR 16 and WCR 73 WCR 50 and WCR 59 WCR 390 and WCR 105 WCR 136 and WCR 77 WCR 126 and WCR 21 WCR 74 and WCR 51 WCR 54 and WCR 17 # ASPHALT PAVED ROADS The Pavement Management Division in Public Works oversees road maintenance of asphalt paved roads, which includes overlays, crack filling, chip seal coat applications, slurry seal, asphalt milling, patching, and curb and gutter repairs. Weld County adds 3-5 miles of paved roads to its system every year. Due to the amount of county roads to be maintained, Public Works strives to remain innovative with current maintenance applications. As a result, Weld County does not have a standard requirement for when gravel or RAP treated roads shall be paved to a standard asphalt surface. Figure 19 diagrams a maintenance threshold guide for future road improvements. In accordance with the functional classification map, future road improvements focus traffic towards paved or treated roads where resources have already been invested. More specifically, decision making for future projects takes into consideration how to guide traffic from the local roadway network to feed into to collector and arterial classified roads. These roads are constructed to handle more traffic, and if the traveling public utilize them rather than local roads, fewer resources are required to maintain the roadway network. Weld County's fugitive dust program is in place for gravel roads carrying more than 200 vpd for a minimum threemonth time period, pursuant to Weld County Code Section 8-6-100. When traffic increases to the 200-300 vpd range, the use of alternative topical treatments may be Figure 19: Road Treatment Thresholds considered prior to using full depth magnesium chloride. Due to the cost of full depth treatments and the volatility of traffic counts, other dust abatement methods may be considered prior to using magnesium chloride. Should the AADT on a road segment fall below the 200 vpd standard, dust control mitigation may be discontinued by decision of the BOCC. Depending on the site-specific circumstances, the County may also consider alternative paving applications, such as RAP, and local low-volume paving for traffic volumes ranging between 300-500 vpd. When traffic exceeds the 500 vpd threshold, or the percentage of truck traffic requires a structurally stronger roadway, the County requires a free draining structure adequate to support traffic. Full depth asphalt paving is not permitted. Weld County has created the HARP program to assist in road maintenance on roads that receive substantial truck traffic associated with oil and gas production. Typically for asphalt paved roads the pavement management crews do an FDR treatment and pave the roadway. HARP projects are partially funded by the oil and gas industry. The HARP paved roads are typically improved with the use of cement treated base to reinforce the ground below the asphalt. This is specifically done to these roads because of the high volume of truck traffic. This FDR process helps save time and money since there is a reduction in materials needed to be trucked to the site, because a portion of the existing roadway is utilized rather than being trucked away. The FDR process entails collecting data from the Public Works Pavement Management System, as well as truck volume percentages in order to develop a 20-year road design life. Public Works collects roadway subgrade geotechnical samples on the stretch of road that will be improved. These samples are tested to determine the correct percentage of cement required. This determination is made by looking at the moisture and consistency of the road base. The Public Works Surveying and Engineering teams put together the FDR design, which is then uploaded to the grader's GPS system. This way of improving roads ensures that the usable lifespan of the roadway is increased in a cost-effective way. The County typically uses FDR to repair 10 to 15 miles of roadway per year. This process is somewhat new to Weld County, but with the positive results seen so far, this program will be continued on into the future for HARP roads. The County also relies on recycled asphalt as a treatment in some locations because it can be a more cost-effective way to maintain a less traveled road. Recycled asphalt roads wear down quickly with higher traffic volumes or heavy vehicles and require a different long-term maintenance program than paved roads. Even though the design or character for recycled asphalt roads differ from paved roads, most drivers view these as paved roads. For the right application, recycled asphalt can be a cost-effective alternative to traditional pavement. Weld County Public Works typically overlays 30 to 50 miles of pavement each year. The department does another 40 to 50 miles of chip seal application per year. Also, the County is responsible for slurry sealing about 25 to 30 miles of pavement per year, which is usually done on County owned parking lots and subdivision roadways. Asset management is assisted by the utilization of the Cartegraph software. Road segments, as well as other assets, are inventoried utilizing the software, which gives staff the ability to easily determine several different key data points. Assets can be easily located using the Cartegraph mapping software. Public Works has information on several different assets, including bridges, cattle guards, fences, gravel pit permits, guardrails, and signs. This new technology allows for a streamlined process when it comes to inventorying County assets. # CONCRETE ROADS The WCR 49 expansion project, which was completed in July of 2018, created a need for continued concrete maintenance. The WCR 49 project was a massive undertaking, which linked Interstate 76 to SH 392 with a 4lane concrete highway, with a 12' median. This much needed improvement created a much safer corridor that has reduced travel time considerably. With this improvement comes the need for the ability to maintain the corridor. Weld County Public Works has created a new crew that specifically focuses on the maintenance of concrete roadways. Concrete roads are designed in a way that allows for extended lifespan, which can be greater than 30 years. These roads do require maintenance to ensure that the lifespan is maximized. Maintenance on concrete roads include crack filling and periodic surface grinding. # GRAVEL ROADS Gravel roads are either treated with chemicals to provide dust suppression or untreated. are Within budaetary constraints, the County maintains gravel roads in accordance with the State Air Quality Control Commission and the CDPHE standards. comply To with these regulations, Weld County uses the following methods for dust mitigation: - Surface treatment using dust control agents - Six-inch stabilized aggregate base using dust control agents - Paving, based on qualification through the CIP prioritization process - Speed limit reductions - Periodic watering Each year, the County uses over 1.3 million gallons of chemical over 200 miles of road for the purpose of dust mitigation. To continue providing efficient County services with limited resources, Public Works has been proactive in finding new technologies which advance our mission. Some of these wise investments include applications in GIS for acquiring data collection, aerial photography, traffic installation, counting, signage and replacement of culverts. These resources allow the department to be extremely responsive when citizen concerns arise. Weld County continues to try new innovative technologies to improve customer service. On gravel roads, dust control methods include applications that help reduce chloride use, are easier to apply, and are safer for the environment and traveling public. For paved roads, modified asphalt mixes are being tested. When improving the surface of gravel roads, the County is seeing success within the Pavement Management Division with the following applications: - Having standard asphalt mixes include recycled asphalt - Using paving with a warm mix asphalt, which is extremely energy efficient because it takes half the energy to produce - Using an asphalt mix which includes recycled roof shingles - To create a better low cost all service weather road, Weld County is chip sealing and slurry sealing over recycled asphalt pavement roads These successful projects represent the County's commitment to provide County residents the highest level of customer service in the most energy efficient and cost-effective manner possible. ### MINING DIVISION OPERATIONS The Department of Public Works finds, permits, excavates, and processes gravel from County owned and operated gravel pits located across the County. The Gravel Roads Division then utilizes the gravel on County roads. Over time, road traffic pushes the gravel to the edges of the roads and during dry conditions the finer fraction (clay material) of the gravel road migrates away as wind-blown dust. Application of dust control measures including water and chemical dust suppression reduce, but do not eliminate, loss of the finer material; replenishment with
new gravel is needed. Gravel production and utilization varies each year depending upon then current gravel road conditions and in response to other demands for construction equipment. In recent years, on average, the County has graded over 65,000 miles of roads annually and produced over 250,000 tons of road base in order to replenish these roads. The County primarily uses its own gravel for this maintenance work however purchases from commercial providers occasionally occur in order to meet the supply needs of the Public Works Department. Figure 20: County Maintained Roads # SNOW REMOVAL Snow Removal is needed in Weld County to ensure the safe and efficient flow of traffic during times of inclement winter weather. The Public Department operates a snow desk during these times to direct snow removal crews around the County. During a snow event, County staff works first to clear highly traveled roadways, then lesser traveled roadways are cleared. Any route needed for emergency services, national defense, dairy and livestock access roads, school bus routes, and mail delivery routes are a priority. County maintained roads in subdivisions are the lowest priority for snow removal, especially when the snow fall is light. Snow removal on paved roads occurs during nearly every snow event, and gravel roads are cleared by road graders when necessary. Routes have been established and priorities assigned which ensure the minimum road network required for operation of emergency vehicles. ### **BRIDGES** Aging bridges and culverts also impact Weld County's road system. Weld County has 447 bridges, of which 314 bridges are classified as "major", with the remaining 133 classified as "minor". A "major" bridge is defined as having a span of twenty feet or more. Every two years, Weld County works with CDOT, who contracts with a consultant, to update and prepare a County-wide bridge inspection report for the "major" bridges. This report is a useful tool to analyze bridge conditions so the County can plan and long-term program for The improvements. minor bridges are inspected on a regular basis by County staff. The two most common methods for evaluating bridge conditions are Sufficiency Rating and Classification. These measures assist staff in determining if the bridge is structurally deficient obsolete, or in need of immediate repairs. Sufficiency ratings are calculated based on a 0-100 scale that compares the existing bridge or culvert to a new bridge designed to current engineering standards. This formula is defined by FHWA. The purpose of the rating is to indicate a bridge's sufficiency to remain in service. The formula places 55% of its value on the structural condition of the bridge, 30% on its serviceability and obsolescence, and 15% on whether it is essential to public use, as shown in **Figure 21**. Figure 21: Bridge Sufficiency Scoring - Structural Condition - Functionality - Importance The bridge's sufficiency rating provides an overall measure of the bridge's condition and is used to determine eligibility for federal funds. Weld County's 2018 Bridge Inspection Report classified approximately 8% of the major bridges as "structurally deficient". An obsolete bridge is one that was built to standards that are not used today. These bridges are not automatically rated as structurally deficient, nor are they unsafe. Obsolete bridges are those that do not have adequate lane widths, shoulder widths, or vertical clearances to serve current traffic demand, or those that may be occasionally flooded. Weld County's 2018 Bridge Inspection Report classified approximately 2% of the major bridges as "Obsolete". To be eligible for federal aid to replace a bridge, it must have a sufficiency rating of less than 50 and be either obsolete or structurally deficient. To be eligible for repair, a bridge must have a sufficiency rating of less than 80. In both instances, federal aid must be matched by a state/local government. The cost share is 80% Federal and 20% state/local government. In the case of bridge repairs, if federal aid is used to repair a bridge, a jurisdiction cannot apply for federal assistance for any further repairs to that bridge for 10 years. **Figure 22** shows the locations of bridges in the County. Figure 22: Bridge Locations The map located to the right shows the fifteen TPRs in Colorado. Below, you will find a close-up view of the TPRs that make up Weld County. Weld County is unique in that it is located within three different TPRs; NFRMPO, UFRTPR and DRCOG. CDOT classifies TPRs as being urban or rural. UFRTPR is classified as rural, where NFRMPO and DRCOG are considered urban, since the population within their census-designated urbanized areas is greater than 50,000. This is significant, because TPRs with urbanized areas of 50,000 or more residents are considered MPOs. The NFRMPO and DRCOG have staff that assist in creating the required documents needed to comply with federal mandates for MPOs. The UFRTPR is administered by CDOT, however member cities/counties determine the policies, procedures and priorities of the region. The population of an area is determined by the U.S. Census, and as the population increases the boundaries of the TPR can change. Changes to the to TPR and MPO boundaries happen through population growth, but also by officials who deem the boundary change necessary, however the Governor must approve these types of boundary changes. Changes to the boundaries include input from impacted stakeholders as well as CDOT and are typically made to better align boundaries in a way that creates a more prudent approach to regional transportation planning. Among other implications, boundary changes have a financial impact on the affected agencies, so a great deal of discussion is had surrounding any change. CDOT is currently developing a guidebook to assist with boundary changes to TPR boundaries. With major population changes on the horizon, it is likely that these boundaries will see changes. An MPO is federally designated by agreement between the Governor and the units of local government responsible for transportation planning processes. MPOs with an urbanized area of 200,000 or more residents are designated as TMAs. Both the NFRMPO and DRCOG are classified as TMAs. Each TPR within Weld County will be discussed in detail within this chapter. Figure 23: MPO Boundaries # NORTH FRONT RANGE METROPOLITAN PLANNING ORGANIZATION The NFRMPO is the transportation and air quality planning agency for portions of Weld and Larimer Counties. The NFRMPO develops the federally mandated regional transportation plan, a long-range transportation planning document that identifies regional transportation priorities. They develop the TIP, a federally mandated document, which identifies projects that will be funded within the boundaries of the MPO within the next four years. The NFRMPO develops several other planning documents, including the freight plan, the non-motorized plan, and the transit plan. The MPO has developed a regional travel demand model, which looks at traffic on a 25-year horizon. They also develop a land use allocation model, which also looks at land use on a 25-year horizon. These models assist member agencies when determining future transportation needs in the region. ### Members of the NFRMPO include: | Berthoud | Greeley | Milliken | |--------------|----------------|-------------| | Eaton | Johnstown | Severance | | Evans | Larimer County | Timnath | | Fort Collins | LaSalle | Weld County | | Garden City | Loveland | Windsor | The member agencies meet on a monthly basis in order to collaborate, discuss and determine policy, and direct MPO staff. Member governments select a representative to attend these Planning Council meetings. The Transportation Commissioner for District 5, as well as a representative from the Colorado Department of Public Health and Environment's Air Pollution Control Division, sit on the Planning Council board. Member agencies also make up the technical advisory committee, which includes a representative from each member agency. The technical advisory committee also includes non-voting members from various agencies. # UPPER FRONT RANGE TRANSPORTATION PLANNING REGION UPPER FRONT RANGE TRANSPORTATION PLANNING REGION The UFRTPR consists of Morgan County and portions of Weld and Larimer Counties. Representatives from member cities, counties and CDOT meet on a quarterly basis for regional coordination and cooperation related to transportation planning. The TPR is led by the Chair, and Vice Chair, who are county commissioners within the TPR, elected by the Council. ### Members of the UFRTPR include: | Ault | Hillrose | Morgan County | |-------------|------------------|---------------| | Brush | Hudson | New Raymer | | Erie | Keenesburg | Nunn | | Estes Park | Kersey | Pierce | | Fort Lupton | Larimer County | Platteville | | Fort Morgan | Lochbuie | Weld County | | Gilcrest | Log Lane Village | Wellington | | Grover | Mead | Wiggins | The UFRTPR serves as the tool for formalizing the process of applying for federal and state funding assistance. The UFRTPR, along with CDOT, develop a regional Transportation Plan in accordance with relevant federal, state, and local regulations and policies. The Transportation Plan provides guidance and direction for decision makers, regarding improving the state highway system. CDOT is able to integrate the plan into the statewide transportation plan, and ultimately utilize the information to prioritize roadway project construction. # DENVER REGIONAL COUNCIL OF GOVERNMENTS DRCOG is the transportation and air quality planning agency for the Denver Metro region. DRCOG is also the federally designated Area Agency on Aging for their region. DRCOG develops the federally mandated planning documents for the Denver Metro region. They also develop and maintain a traffic demand model, which is utilized to develop the long-term transportation plans. Weld County, CDOT,
municipalities in the Weld County portion of the DRCOG region, and DRCOG meet regularly at the Southwest Weld County Service Center. These Southwest Weld County DRCOG Forum meetings allow collaboration and discussion between communities in the region regarding DRCOG related issues. Members of DRCOG (within Weld County) include: | Brighton | Firestone | Longmont | |----------|-----------|----------| | Dacono | Frederick | Mead | | Frie | Lochbuie | | DRCOG is made up of 57 local governments, including the eight listed above which are located in Weld County. In order to assist the Weld County municipalities, the County has assisted in facilitating meetings to assist in developing the TIP. Participation in this subregional forum has helped ensure that Weld County projects in the DRCOG region are included in the TIP. # TRANSPORTATION PARTNERSHIPS #### INTERSTATE 25 COALITION In 2013, elected officials and staff from three counties and fourteen municipalities developed the Interstate 25 Coalition for Northern Colorado. The main goal for the coalition was to advocate for the expansion of the northern section of I-25 in Colorado. Projects, along the corridor have occurred in part because of the dedication of this coalition. This corridor is a major US freight corridor, and essential to the economic growth of the region. Contributions through this coalition will continue to ensure that necessary improvements to the corridor are made. ### **US HIGHWAY 34 COALITION** As traffic along the US Highway 34 corridor increased, elected officials decided to begin meeting in the early part of 2015. The main concern was looking at the existing accesses, and crossroads along the corridor. The initial meetings included representatives from Weld County, Evans, Greeley, and Windsor. As time went on, representatives from Loveland, Johnstown, Kersey, Larimer County, NFRMPO and CDOT joined in on the meetings. Enlisting the assistance of CDOT, in 2019 the US Highway 34 PEL study was completed. This document as well as the ACP, developed in 2003, help to ensure the functional integrity of the corridor. The current priorities include ensuring improvements to the corridor are made in order to keep up with traffic increases and preserving the corridor to accommodate future growth. #### STATE HIGHWAY 52 COALITION Population increases in the southwest portion of Weld County have led to increases in traffic along the SH 52 corridor. In order to assist in maintaining the functional integrity of the SH 52 corridor, a coalition was formed. Weld County joined Boulder County, Dacono, Erie, Fort Lupton, Frederick, Hudson, Keenesburg, and CDOT to form the coalition. The formation of the coalition has led to the development of a PEL and an ACP. Utilizing these documents will be key in ensuring that this corridor continues to function properly, and that improvements can occur in a timely and efficient manner. ### STATE HIGHWAY 66 COALITION Traffic increases along SH 66 have led to the development of the SH 66 coalition. The coalition includes Firestone, Longmont, Lyons, Mead, Boulder County and Weld County. A PEL and an ACP have been developed on the corridor from McConnell Drive in Lyons to WCR 19. The coalition assisted in developing this plan in order to improve safety, mobility, and access management on the corridor. This corridor is planned to be expanded in the future to four lanes. #### **US HIGHWAY 85 COALITION** The US 85 Coalition was created via a Memorandum of Understanding and made binding by "Resolutions of Support" between Weld County and ten municipalities in 2009 and 2010. The jurisdictions include Ault, Brighton, Eaton, Evans, Fort Lupton, Gilcrest, Greeley, LaSalle, Pierce, Platteville, and Weld County. This effort is in partnership with CDOT, DOLA, Fort Lupton Development Corporation, and Union Pacific Railroad. All entities are being tasked with addressing sustainability and regionalization efforts along US 85, which carries a wide range of traffic types: long-distance interstate traffic, commuter traffic to large employment bases, intercommunity traffic, and considerable agricultural traffic. Each community's pledge is for full support and encouragement of the Highway 85 Coalition and to provide elected official and staff support for meetings. In addition, the communities also pledged to consider matching funds for grants as part of the budget process. Regional cooperation is not new to Weld County but has been occurring for many decades. The precursor to the Coalition began back in 1999 when the same communities came together and adopted an IGA for the US 85 ACP. The US 85 ACP was also a planning effort consisting of residents, property owners, local governments, CDOT, and highway users working closely together. The US 85 ACP is still used today and remains a highly regarded document amongst the communities. The Highway 85 Coalition wants to expand the efforts of the US 85 ACP and incorporate not only transportation, but land use and sustainability resources. In 2017, CDOT developed the US Highway 85 PEL Study. The PEL was developed in order to present the vision for the US Highway 85 corridor. The PEL includes long term plans for the corridor, including potential intersection, and interchange improvements, as well as closures. Weld County, CDOT and Union Pacific Railroad have worked together to identify potential closures of railroad crossings in order to ensure safety along the corridor. Some of these closures have been implemented as of this time. A main consideration in closing an intersection is to provide a safe and convenient alternative. The PEL attempts to identify these alternatives. # 8-HOUR OZONE NONATTAINMENT AREA In November 2007, the Environmental Protection Agency (EPA) designated the Denver/North Front Range region as nonattainment for the 8-hour ozone standard of 0.08 parts per million (ppm) as adopted in 1997. **Figure 24** shows the nonattainment area, which includes portions of Larimer and Weld Counties, more specifically extending north to approximately WCR 100. Ozone is a National Ambient Air Quality Standard (NAAQS) pollutant that is not emitted directly, but rather is a secondary pollutant that forms in the atmosphere through complex chemical reactions. Volatile Organic Compounds (VOCs) and Nitrogen Oxides (NOx) react in the presence of strong sunlight, warm weather and stagnant winds to form ground-level ozone. Reductions in emissions of the ozone precursor pollutants are the primary methods used to reduce ozone concentrations. Several sources emit VOCs and NOx; vehicles are a source of both. VOCs (e.g., vapors or fumes) are emitted by evaporative loss of unburned fuel as well as from vehicle tailpipes due to incomplete fuel combustion. NOx is also emitted from vehicle tailpipes as a combustion byproduct. The eight-hour ozone nonattainment area includes all counties in the DRCOG region except Clear Creek and Gilpin, the North Front Range region as well as parts of the Upper Front Range TPR. The SIP lists strategies and control measures that will be implemented to reduce emissions. Some of these strategies include restrictions for oil and gas condensate on storage tanks, alternative fuels, removal of exemptions on point sources of pollutants, and the expansion of the vehicle inspection and maintenance program in parts of Weld and Larimer counties. Communities within the ozone nonattainment boundaries are eligible for CMAQ funds. The purpose of the federal CMAQ program is to fund transportation projects or programs that will contribute to attainment or maintenance of the NAAQS, particularly for ozone in the Weld County region. The CMAQ program supports improving air quality, and relieving traffic congestion. In order to promote natural gas as an alternative fuel source, Weld County formed the Weld County Natural Gas Coalition. Also, Weld County created the Weld County Smart Energy Plan, which identifies short- and long-range goals for natural gas infrastructure improvements and vehicle conversions. Weld County has received CMAQ funds to assist with the installation of public natural gas fueling stations and education and public awareness marketing throughout the County. Weld County has received more than \$8 million in CMAQ funds from 2010 to 2020 to promote natural gas as an alternative fuel source. In addition, Weld County has partnered with the Oil and Gas industry to convert fleet vehicles to bifuel (gasoline and CNG), dedicated CNG, or liquefied natural gas (LNG). Dedicated vehicles are fueled only on natural gas. Typically, diesel vehicles are converted to Dedicated CNG. Fleet vehicle conversions range from passenger vehicles to heavy duty pickups. Tandem and semi-tractors would be fueled on liquefied natural gas. Unfortunately, CDOT and FHWA have essentially discontinued the program that helped sustain the move to a natural gas fleet, which has reduced the County's ability to buy converted vehicles. The "Buy America" program, which assisted in the acquisition of natural gas vehicles is no longer available to local governments. Regardless, Weld County continues to promote the use of natural gas vehicles within the County. Figure 24: 8-Hour Ozone Nonattainment Boundary # ACCESS MANAGEMENT Access management is a key tool in reducing congestion, preventing crashes and preserving roadway capacity. The main purpose of an ACP is to maintain and enhance the safety and mobility of the corridor while also providing reasonable access to adjoining properties. Each intersecting driveway or street is an access point that increases the potential for conflicts between through-traffic and traffic using the access. A greater number of conflict points lead to a higher number of automobile collisions, as well as a greater danger for pedestrians and bicyclists. Access management improves safety by controlling the number, location, and spacing of access points along the corridor. This benefits traffic flow by reducing
roadside interference, thereby allowing drivers on the corridor to better predict where other vehicles will turn and cross. When looking at the function of a road, it is important to understand how mobility and access interact. A higher number of accesses on a road section increases the amount of potential conflicts. Crashes are more likely to occur at locations with a higher number of conflict points. In order to mitigate the concerns of more contact points, posted speeds are reduced. Therefore, interstates and highways have high speeds and few accesses, and local roads have a higher number of accesses. A higher posted speed is sacrificed for additional accesses in order to maintain safety, which in turn reduces mobility along the corridor. Access management also allows for more efficient management of roadside drainage. Having more driveways along the corridor means having more culverts installed. Culverts must be maintained in order to function as intended. When culverts become clogged, roadside drainage is greatly affected. Reducing the number of culverts allows for the roadside ditches to function as intended in a storm event. Another important characteristic of the roadway system is reliability, which can be affected by traffic incidents/accidents, flooding, wind, downed trees, downed powerlines, underground utility issues, and other factors. # COMPLETED ACCESS CONTROL PLANS # FREEDOM PARKWAY (WELD COUNTY ROAD 54) The Freedom Parkway ACP was developed as a collaborative effort by nine government entities including the City of Evans, City of Greeley, Town of Johnstown, Town of Kersey, Larimer County, City of Loveland, Town of Milliken, Weld County, and CDOT. This ACP includes portions of SH 402, Larimer County Road 18, WCR 54, and 37th Street. The ACP goes from Larimer County Road 7 to the west and WCR 49 to the east. The plan was adopted by the Weld County Board of Commissioners on December 18, 2018. ### WELD COUNTY PARKWAY In response the construction of the Weld County Parkway, Public Works staff developed the Weld County Parkway ACP. The study area for this ACP is from US Highway 34 to the south and WCR 60.5 to the north. This ACP was developed in 2015. The primary goal for this plan is to limit access to the newly constructed roadway. ### WELD COUNTY ROAD 29 The WCR 29 ACP was developed in cooperation with the Town of Eaton, Town of Ault, Town of Pierce, Town of Nunn, and the Town of Severance. The corridor extends from SH 392 to the south to WCR 100 to the north. The plan was adopted by the Weld County Commissioners on February 26, 2018. The plan was developed in order to assist in making improvements to the corridor, and to improve corridor safety. #### WELD COUNTY ROAD 47 In response the construction of improvements to WCR 47, Public Works staff developed the WCR 47 ACP. The study area for this ACP is from WCR 60.5 to the south and SH 392 to the north. This ACP was developed in 2016. The primary goal for this plan is to limit access to the newly constructed roadway. ### WELD COUNTY ROAD 49 The WCR 49 ACP was developed as a collaborative effort by four government entities including the Town of Hudson, Town of Keenesburg, Town of Kersey, and Weld County. The ACP extends from Interstate 76 to the south to US Highway 34 to the north. The WCR 49 ACP was adopted by the Weld County Commissioners on December 15, 2014. ### WELD COUNTY ROAD 74 The WCR 74 ACP was developed in cooperation with the Town of Eaton and the Town of Severance. The corridor extends from SH 257 to the west to County Road 39 to the east. The primary goal of the plan is to preserve the functional integrity of WCR 74 as development occurs on the corridor. # FUTURE ACCESS CONTROL PLANS In order to maintain the functional integrity of our county roads, Weld County must consider developing ACPs on all corridors that are expected to increase to a high level of traffic volume in the future. Arterial classified roads are at the top of the priority list when it comes to developing access control plans. As a goal, Weld County has outlined the need for ACPs on all the arterial roadways. Priority for developing ACPs is as follows: - 1. WCR 44 between WCR 49 and SH 60 - 2. WCR 13 between WCR 2 and SH 60 - 3. WCR 2 between WCR 11 and Interstate 76 - 4. WCR 19 between WCR 2 and SH 66 - 5. WCR 22 between WCR 49 and US Highway 85 Many of these proposed access control plan locations have multiple jurisdictions who maintain the road. Collaboration with these communities will be key in implementing the plans. This collaboration will ensure that these corridors will be able to withstand the level of traffic that is anticipated in this region in the future. Planning for the future and preserving the functional integrity of these corridors will also ensure that improvements are made in a cost-effective, collaborative way. # TRAFFIC FORECAST STUDY As a part of the 2045 Transportation Plan update, Weld County teamed up with Alliance Transportation Group to conduct a traffic forecast study. The traffic forecast study was conducted in order to provide decision-makers a picture of future traffic levels and how proposed transportation projects can serve the needs of the community. The project was a collaborative effort to develop three travel demand forecasting scenarios using the CDOT Statewide Travel Demand Model (FOCUS) to forecast 2045 traffic for Weld County. The use of the CDOT FOCUS model provides a consistent forecast for all of Weld County and allows for an understanding of regional trip patterns and their effect on Weld County. Weld County was the first local government to utilize the FOCUS model. To meet project objectives, Alliance developed the modeling scenarios, conducted the analysis, and reported the results to Weld County. The FOCUS model was reviewed and updated to ensure the forecasting reliability for the traffic forecasts. A 2045 No Build Scenario, a 2045 Build Scenario, and an oil and gas related truck scenario were performed using the CDOT FOCUS model. Travel models are tools used to help understand how changes to a transportation system, combined with population growth and land use changes over time, might affect travel patterns in a given area in a specified future year. The recently developed CDOT FOCUS model was obtained from CDOT and was used as the tool for forecasting traffic for Weld County. Using the CDOT FOCUS model provides consistent socioeconomic data for both base year and forecast years at the TAZ level and allows for an understanding of regional trip patterns and their effect on Weld County, thus providing a consistent forecast for all of Weld County. The FOCUS model is an activity-based model covering the entire state of Colorado with a base year of 2015 and a forecast year of 2045. The 2045 FOCUS model network reflects the roadway projects included the most recently adopted Metropolitan Transportation Plan of every MPO within the state. The FOCUS model inputs were reviewed to ensure that the model accurately represents the 2015 land use and roadway conditions within Weld County, and that the model reasonably forecasts land use and roadway traffic in 2045. The FOCUS model base year validation within Weld County was reviewed and improved to increase the model's forecasting reliability. Input revisions were carried through to all modeled scenarios to ensure consistency. The following section describes the findings of the study. # TRAFFIC VOLUME PROJECTIONS As described in the previous section, the FOCUS model is validated and selected to be the tool for producing the traffic forecasts for Weld County roadways. Therefore, the main source of the traffic forecasts is the FOCUS model results. The following strategies are adopted when developing the traffic forecasts: - If the roadway is in the FOCUS model network, the modeled volume, including total volume and truck volume will be used as the traffic forecast for the roadway. - If the roadway is not in the FOCUS model network, the available count information becomes the most reliable source for predicting future traffic and a growth rate is applied to the count to derive forecast year traffic based on subarea and facility type attributes. - To address oil and gas trucks, a thorough review of the base year modeled truck volume and available observed truck counts was done to identify the systematic pattern of truck underestimation. Trucks are underestimated primarily on a few routes such as WCR 49. Therefore, the model-based and count-based truck volume forecast on these facilities was evaluated and the truck volumes were adjusted based on the calculated shortage of oil and gas trucks in the County, the trucks' primary routing, and the identified location of oil and gas activity in the County. - If the roadway is not in the FOCUS model network and does not have count information, the links were examined. - Some link volumes are logically derived based on the available connecting roadway volumes. - o If volumes cannot be logically derived, a potential traffic volume range is assumed for the roadway. The potential traffic volume range is developed based on the roadway facility type and subarea in which it is located. The median volume (average level) of the links of the same facility type within the same subarea is summarized and recommended as the likely volume for the roadway. Median truck percentages are calculated in a similar way and the median truck percentages are applied to the median volume to derive the estimated trucks on these links. - The resulting traffic forecasts are visually inspected for consistency and reasonableness, and adjustments were applied to resolve inconsistencies from different forecasting sources. Traffic growth is not evenly distributed geographically. It is beneficial to calculate traffic growth rates based on geographic locations that are consistent with the development patterns in the County. The subarea layout that is used in this study follows
the subareas used in the Weld County 2035 Transportation Plan, as shown in **Figure 25**. Note that due to the FOCUS model zone structure, the zones vary slightly along WCR 73 and US 85. **Figure 28** shows 2045 traffic projections for Weld County, and **Figure 30** shows truck traffic forecasts for the County. The traffic annual growth rate is derived based on the FOCUS model projected VMT growth rate between the base year 2015 and 2045 by facility type and subarea. Since the gravel roads and subdivision roads are beyond FOCUS model resolution, the subarea level population growth rate and subarea level VMT growth rate were compared and the lesser growth rates were chosen as the growth rate for gravel roads and subdivision roads. **Table 5** lists the derived compound annual growth rate by facility type and subarea. Figure 25: Subarea Road Locations Table 5: Subarea Growth Rates | | | SUBAREA | | | | | | | | |----|------------------|---------|-------|-------|-------|-------|-------|-------|-------| | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | ш | Paved Arterial | 2.63% | 0.98% | 3.52% | 3.42% | 3.05% | 2.29% | 2.97% | 2.53% | | Γ | Paved Collector | 4.81% | 1.26% | 5.02% | 2.61% | 6.14% | 5.18% | 2.64% | 3.17% | | Ξ | Paved Local | 3.32% | 1.88% | 1.95% | 0.46% | 2.79% | 2.34% | 1.12% | 1.55% | | Ξ | Gravel Arterial | 3.32% | 1.88% | 1.95% | 0.46% | 2.79% | 2.34% | 1.12% | 1.55% | | AC | Gravel Collector | 3.32% | 1.88% | 1.95% | 0.46% | 2.79% | 2.34% | 1.12% | 1.55% | | щ | Gravel Local | 3.32% | 1.88% | 1.95% | 0.46% | 2.79% | 2.34% | 1.12% | 1.55% | **Figure 26** below shows the trip interaction between Weld County and all areas within the State of Colorado. Figure 26: Trip Interaction Between Regions **Table 6** presents the top destinations and their corresponding daily vehicle trips and trip percentages that originated from Weld County. **Table 7** presents the top origins and their corresponding daily vehicle trips and trip percentages that destinated to Weld County. **Table 8** presents the trip interaction among major travel sheds of Weld County. Note that the number of vehicle trips were rounded to the nearest hundred and the trip percentages do not sum up to 100%, as the percentages are calculated based on all 17 regions within the State of Colorado. Outside of Weld County the top three origins and destinations are Larimer County, Boulder County and the Denver Metro Area. Table 6: Top Destinations from Weld County | TRAVEL SHEDS | NUMBER OF TRIPS
(VPD) | PERCENTAGE OF TRIPS | |--------------------------|--------------------------|---------------------| | INTERNAL TO WELD COUNTY | 1,112,600 | 73.19% | | LARIMER COUNTY | 179,200 | 11.79% | | BOULDER COUNTY | 112,100 | 7.37% | | DENVER METRO AREA | 84,900 | 5.59% | | ADAMS/ARAPAHOE COUNTY | 14,500 | 0.94% | | WESTERN PORTION OF DRCOG | 9,500 | 0.63% | Table 7: Top Origins to Weld County | TRAVEL SHEDS | NUMBER OF TRIPS
(VPD) | PERCENTAGE OF TRIPS | |--------------------------|--------------------------|---------------------| | INTERNAL TO WELD COUNTY | 1,112,600 | 73.12% | | LARIMER COUNTY | 179,900 | 11.82% | | BOULDER COUNTY | 112,700 | 7.41% | | DENVER METRO AREA | 87,000 | 5.72% | | ADAMS/ARAPAHOE COUNTY | 14,100 | 0.93% | | WESTERN PORTION OF DRCOG | 8,900 | 0.59% | Table 8: Trip Interaction Between Regions (VPD) | | WELD | LARIMER
COUNTY | BOULDER
COUNTY | DENVER
METRO
AREA | ADAMS/
ARAPAHOE
COUNTY | WESTERN
PORTION
OF
DRCOG | |--------------------------------|-----------|-------------------|-------------------|-------------------------|------------------------------|-----------------------------------| | WELD
COUNTY | 1,112,600 | 179,200 | 112,100 | 84,900 | 14,500 | 9,500 | | LARIMER
COUNTY | 179,900 | 1,514,000 | 29,200 | 9,800 | 4,200 | 2,700 | | BOULDER
COUNTY | 112,700 | 29,500 | 1,109,800 | 207,200 | 13,500 | 98,900 | | DENVER
METRO
AREA | 87,000 | 9,600 | 209,300 | 5,410,700 | 271,000 | 608,600 | | ADAMS/
ARAPAHOE
COUNTY | 14,100 | 4,300 | 13,400 | 268,600 | 217,900 | 13,300 | | WESTERN
PORTION
OF DRCOG | 8,900 | 2,600 | 98,200 | 601,200 | 12,800 | 1,155,700 | Figure 27: Traffic Volumes (2015) Figure 28: Traffic Volumes (2045) Figure 29: Truck Traffic Volumes (2015) Figure 30: Truck Traffic Volumes (2045) # FUNCTIONAL CLASSIFICATION PLAN Where the Transportation Plan is used as a tool to guide the CIP, Development Review and Planning with land use recommendations, the functional classification plan is a component of the Transportation Plan and is the process by which county roads are grouped into classes according to the character of service provided. The purpose of grouping the roads into classes helps identify locations for future ROW reservation. As you would expect, analyzing future traffic volumes assist staff in developing the functional classification plan. Indications of major growth of traffic on a corridor may require staff to upgrade the classification of the roadway. In the next section, the functional classification guide gives a more in depth look at how changes are made. A roadway classification plan is intended to perform the following three functions: - Define the function (a combination of mobility and access) that roadways within a system should be planned to provide - Identify the design characteristics (cross-section and geometric standards), which roadways should demonstrate given their function - Define the amount of ROW which should be preserved to construct the ultimate roadway A roadway network is comprised of a hierarchy of roadways whose functional classifications are defined by their usage. Typically, roads serve two functions; they provide access and mobility. The relative degree to which a road serves these functions defines its functional classification. In order of their ability to provide mobility, the roadway functional types are more thoroughly described in the following subsections. #### FEDERAL AND STATE HIGHWAY SYSTEM Freeways usually serve long distance travel between major communities and provide the greatest mobility, with strictly controlled access allowed only at interchanges. No direct property access is allowed. Much of the primary roadway system in Weld County consists of roads that are maintained by the federal and state governments. Weld County has two freeways within its boundaries. Interstate 25 and Interstate 76. They are defined by high speeds and access is provided by widely spaced, grade-separated interchanges. Two other federal highways within the County are US 34, which provides a major east/west segment, while US 85 is a major north/south route. These highways provide regional mobility functions to and through the County. State Highways in the County include segments of SH 14, SH 52, SH 56, SH 60, SH 66, SH 71, SH 79, SH 119, SH 257, and SH 392. These roads generally serve arterial roadway functions. ### ARTERIAL ROADWAYS Arterials carry longer-distance traffic flow for regional, intercommunity and major community purposes. The primary difference between freeways and major arterials is access. Freeways have fully controlled accesses with no at-grade intersections, while arterials include limited atgrade intersections. Arterials can carry significant traffic volumes at higher speeds for longer distances and are seldom spaced at closer than one-mile intervals. In Weld County, the State highway facilities comprise most arterial roadway needs. Outside of the State system, Weld County's arterial road network consists predominately of two-lane rural arterials. Arterials transitioning into the municipalities tend to become four lanes carrying major traffic flows to important activity centers. The County also has a Colorado State recognized county highway in WCR 49. WCR 49 is an arterial roadway, that also has a higher classification as a county highway. ### **COLLECTOR ROADWAYS** Collectors link local roads with the arterial road system. Both mobility and access are of equal importance on these roadways. Travel speeds and volumes are moderate, and distances traveled are short to medium. Traffic on collector roads typically has an origin or destination within the nearby area. Weld County also has gravel rural collectors. These roads are located more in the north and east portions of the County where the population is less dense. Regardless of traffic volumes, these roads receive traffic from the local roads and feed to paved collector or arterial roads. Many arterials and collectors in Weld County have direct access to residences, farms and irrigation ditch roads. Collector roads transitioning into municipalities tend to be connections within residential, commercial and industrial areas. They are usually two to four lanes and connect city centers, schools and neighborhoods. ### LOCAL ROADWAYS In both rural and urban areas, the primary function of local roads is to provide access to adjacent land uses, whether they are residences, businesses, or community facilities. Local roads are closely spaced, two lanes wide, and carry relatively lower traffic volumes short distances. They generally are internal to or serve an access function for a residence, farm, single neighborhood or development, and generally, should lead traffic to a collector road. ## SCENIC BYWAYS Scenic and Historic Byways are nominated by local partnership groups and designated by the Colorado Scenic and Historic Byways Commission for their exceptional scenic, historic, cultural, recreational, and natural features. The Pawnee Pioneer Trail Scenic Byway represents the only scenic byway designated within the County. This scenic byway is identified on state highway maps. Appropriate signs delineating the route are strategically located to keep motorists on the appropriate route. Through the Pawnee Grasslands, the trail byway utilizes existing gravel roads that are regularly maintained by Weld County. # ROAD CLASSIFICATION DEFINITIONS **Table 9** shows how roadway
classification is determined when staff and elected officials review the current classifications of the County roadway system. This is also shown in **Figure 31**. **Table 9: Road Classification Definitions** | CLASSIFICATION | CONTINUITY | SERVICE BETWEEN MAJOR ORIGIN/DESTINATION | AVERAGE TRIP
LENGTH | SPACING | |----------------|---|---|--|--| | ARTERIAL | Moderate to long. Extension of state highway system. Movement between major activity centers. | Serves as connection to larger population centers. | Primarily longer
trips to/from
larger population
centers. | No less than one mile apart. | | COLLECTOR | Short to moderate.
Link local roads to the
arterial system. | Serves less densely
populated areas.
Provides local
circulation service. | Mostly short to medium trips for less populated areas. | As needed to serve population density. | | LOCAL | Short to moderate. | Serves low density areas and provides local access. | Mostly local
traffic. | As needed to serve population density. | The three primary considerations in classifying Weld County roadways are more thoroughly described as follows: ### 1. Connectivity This consideration pertains to the nature of the area(s) that a roadway serves and is primarily an issue for the rural areas of the County. For arterial roads, the connectivity characteristic is that it serves a major community, or series of municipalities within the region. Arterials allow direct entry into/out of the larger jurisdictions, and they extend to/from other major communities or major roadway facilities. Portions of the County arterial system could also serve as an extension of the state highway system where state highway designations abruptly terminate, or parallel the state system, such as WCR 49 to US 85. As mentioned, collector roads have a mobility function within the rural areas of the County. In this sense, collectors are a subordinate arterial roadway. Collectors should serve as the primary links to/from the smaller communities where arterials are not present. Collector roads may also be designated in low density, low-volume areas where there are missing mobility links and an arterial designation would be overkill. ## 2. Continuity of Roadway Continuity is a relative measure and is not an absolute. The continuity of roads may vary between urban and rural areas. The continuity of an unincorporated road in close proximity to an urbanized area will be gauged against the size of that area, whereas the continuity of roads in rural areas should be considered within the context of the entire County roadway network. A road that might have a significant amount of continuity does not automatically qualify to be an arterial or even a collector. Rather, possessing some degree of continuity is one characteristic of the roads which are designated as collector or arterial roads. ### 3. Traffic Volume Thresholds Arterial roadways usually involve all three functional characteristics (continuity, connectivity, and daily traffic). Since these roads are typically the most continuous and connected, they by default, tend to carry the most traffic; therefore, daily traffic thresholds for the roadway classifications is another tool to consider when analyzing road classifications. Historically, Weld County roads do not carry high traffic volumes, so the proposed capacities are intended to be more indicative of rural County traffic flow. For Weld County, any road carrying more than 7,000 vpd is a strong candidate for an arterial road, and any roadway carrying more than 2,000 vpd and less than 7,000 vpd is a candidate for being a collector road. There will be many exceptions in which an arterial might be identified for volumes under 7,000 vpd. Daily traffic volumes alone should not be the only factor relative to classification designation. An appropriately defined roadway classification may sometimes carry traffic volumes well below its typical threshold. Other classification characteristics should be defined as part of the plan including the roadway's continuity, service between activity centers (connectivity), relative trip length of traffic utilizing the road, and approximate spacing of parallel facilities. The continuity element of each classification should be more continuous than that for local roads. The connectivity component should generally recognize that arterial roads tend to serve larger activity centers than collector and local roads, and relative trip length is typically longer along arterial roads than the collector or local roads. The spacing between roads for each classification will need to vary according to the surrounding environment. In general, parallel arterial roadways should be spaced farther apart than parallel collector or local roads. In a rural application this can mean arterial spacing every 2-4 miles. #### FUNCTIONAL CLASSIFICATION MAP SUMMARIZED The functional classification map is used as the official future roadway plan for the County. Therefore, the functional classification map is one of the more important transportation planning tools associated with the Transportation Plan. The functional classifications determined by the County may not necessarily match the CDOT/FHWA classifications, which ultimately determine federal-aid eligibility of a roadway. In addition to revising the functional classification map, the County also revised the existing typical road cross-sections to include an interim and ultimate section. While it is important to reserve the ultimate ROW section, funding availability does not always allow for construction of the ultimate section, and therefore, an interim section should be considered until funding becomes available. The width of a roadway is an important design consideration to ensure the road network is appropriately sized to serve its function. #### UPDATING THE FUNCTIONAL CLASSIFICATION PLAN This section is intended to provide guidance in maintaining the County's roadway classification system. As conditions change, the County should review all the roadways and determine if a change in road classification is appropriate. It is recommended that this exercise be conducted at least once every two years. This will ensure that proper actions can be taken to preserve ROW necessary for the ultimate construction of each roadway as needed. The definitions of each classification were previously discussed and summarized in **Table**9. These definitions can also be used in determining if any classification adjustments should be made to the system. Considerations in making changes include the following: - 1. Daily traffic volume (existing and future) - 2. Continuity of roadway - 3. Connectivity between communities These considerations are most applicable to the rural areas. A key factor for the unincorporated area roadways is to maintain close coordination with the local jurisdictions. The County should be proactive with local jurisdictions to the point that arrangements are made to notify and communicate any planning efforts which might affect an entity's road system. This effort could be accomplished through a standard referral process and should be a future Transportation Plan goal for Public Works. It is imperative the County Public Works and Planning Departments coordinate closely to ensure development information is forwarded to the appropriate staff to monitor these roadway classification changes. # FUNCTIONAL CLASSIFICATION GUIDE To assist staff and elected officials with classifying roads, a road classification guide was developed. This guide takes into consideration the classification definitions and graphically displays the process. The flow charts may not address every conceivable scenario relative to classifying a roadway, but it does serve as a general guide to assist the County in determining if any classification changes might be necessary in the future. If unique circumstances exist, some judgment must be exercised in using the flow charts. Some examples for classification consideration include: - 1. Type and magnitude of travel generators - 2. Route feasibility and directness of travel - 3. Traffic characteristics and trip length - 4. Spacing between types of functional classes - 5. Continuity of various functional classes - 6. Multiple service capability (accommodation of the modes of transportation) - 7. Relationships of functional classes to transportation plan(s) - 8. Integration of classifications of adjoining jurisdictions - 9. Miles and travel classification control values, such as access Figure 31: Guide to Modifying Functional Classifications Figure 32: Functional Classification Map # LONG RANGE TRANSPORTATION PROJECT LIST Since the adoption of the 2035 Transportation Plan, many of the projects listed in the plan have been completed. The County finished construction of The County Highway, which improved many of the intersections, and alignments listed in the 2035 plan. Other projects that have been completed since the adoption of the 2035 plan include the realignment of WCR 23 north of SH 392, the completion of the WCR 49, and 74 access control plans, several bridge improvements, and several intersection improvements including, WCR 54 and WCR 17, where the County's first roundabout was completed in unincorporated Weld County. As priorities shifted over the last 10 years, some of the projects on the list were not completed and are included in the 2045 Transportation Plan project list. As the County looks at funding future projects, costs related to utilities within the ROW, and impacts related to oil and gas production, (Such as construction of pipelines near or through ROW) become a major concern. Costs for relocating
utilities, as well as oil and gas infrastructure, continue to rise and become a major consideration when selecting County infrastructure improvements. As these costs continue to rise, the number of improvements that the County will be able to complete will be reduced. These costs become very high with intersection improvements given the increased amount of utilities and oil and gas infrastructure in the project area. The County continues to work to ensure that these facilities are located outside of the area needed to improve the roadway, but with the high increase of development in Weld County it is difficult to mitigate this concern. Cost of ROW acquisition has increased substantially as well, which will likely continue to rise in a major way. The 2045 project list seeks to reasonably account for these extra costs associated with construction when determining a cost estimate for future projects. **Tables 10-12** list potential projects on Weld County's roadway network over the next 25 years. The listed projects are intended to depict Weld County's future needs only and does not imply these improvements will be constructed within this timeframe. The conceptual cost estimates used to generate the project list can be found in **Appendix D**. Table 10: Short-Range Capital Improvement Project List (2021-2025) | Capital Improvement Project | Description | Cost Estimate | |--|---|-----------------| | SH 52 and WCR 37 | Intersection Improvement (Auxiliary Turn Lanes) | \$2,924,095.47 | | WCR 35 (35th Ave.) from 'F' St. to 'O' St. | Widening to add Shoulders (IGA City of Greeley) | \$7,665,396.37 | | WCR 64 (O St.) and WCR 35 (35th Ave.) | Roundabout | \$6,345,669.29 | | WCR 74 and WCR 33 | Roundabout | \$9,329,842.84 | | WCR 64 (O St.) and WCR 31 (59th Ave.) | Roundabout | \$6,612,181.21 | | WCR 70 and WCR 39 | Intersection Improvement (Auxiliary Turn Lanes) | \$1,503,485.33 | | WCR 66 and WCR 41 | Intersection Improvement (Auxiliary Turn Lanes) | \$10,221,233.40 | | US 85 Intersection Closure | WCR 2.5 (East side) | CDOT | | US 85 Intersection Closure | WCR 29 (East side) | CDOT | | US 85 Intersection Closure | WCR 30 (East side) | CDOT | | US 85 Intersection Closure | WCR 33 (East side) | CDOT | | US 85 Intersection Closure | WCR 46/35 (East side) | CDOT | | US 85 Intersection Closure | O Street (East side) | CDOT | | US 85 Intersection Closure | WCR 37 (East side) | CDOT | | US 85 Intersection Closure | WCR 78 (East side) | CDOT | | WCR 80 and WCR 37 | Intersection and Bridge Improvements | \$2,501,757.18 | | WCR 13 and WCR 6 | Roundabout | \$6,070,102.13 | | SH 66 and WCR 21 | Intersection Improvement (Auxiliary Turn Lanes) | \$5,438,513.27 | | WCR 31 and WCR 18 | Intersection Improvement (Auxiliary Turn Lanes) | \$4,383,946.47 | | WCR 37 and AA St (WCR 66) | Intersection Improvement (Auxiliary Turn Lanes) | \$5,150,738.20 | | WCR 13 and WCR 50 | Intersection Improvement (Auxiliary Turn Lanes) | \$8,203,427.14 | | WCR 74 and WCR 31 | Roundabout | \$9,625,967.84 | | WCR 54 from WCR 13 to WCR 15 | Rebuild and Widen to add Shoulders | \$6,984,912.58 | | WCR 54 from WCR 15 to WCR 17 | Rebuild and Widen to add Shoulders | \$6,525,002.96 | | WCR 54 from WCR 17 to Hwy 257 | Rebuild and Widen to add Shoulders | \$7,915,869.33 | | WCR 19 and SH 52 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,210,141.99 | | O Street and WCR 27 Intersection | Intersection Improvement (Auxiliary Turn Lanes) | \$5,484,326.07 | | |--|---|-----------------|--| | WCR 27 (83rd Ave) | Alignment (Bracewell Curves) | \$10,984,642.06 | | | WCR 44 from US 85 to WCR 49 | Widening (Grade Separation) | \$22,577,621.34 | | | WCR 66 from US 85 to WCR 47 | Rebuild and Widen to add Shoulders | \$10,406,065.59 | | | WCR 66 and WCR 43 | Intersection Improvement (Auxiliary Turn Lanes) | \$5,458,903.91 | | | WCR 58 and WCR 53 | Intersection Improvement (Journey Ventures) | \$3,704,466.73 | | | SH 14 and WCR 25 | Intersection Improvement (Auxiliary Turn Lanes) (WM) | \$1,611,362.00 | | | WCR 59 and Market St | Intersection Improvement (Auxiliary Turn Lanes) (WM) | \$4,368,818.27 | | | West of WCR 41 and South of WCR 64 | Roadway Improvements | \$477,573.89 | | | WCR 105 and SH 14 | Intersection Improvement (Auxiliary Turn Lanes) | \$4,360,851.17 | | | SH 392 and WCR 35 | Intersection Improvement (Auxiliary Turn Lanes)
(Eagle View Farms) | \$1,684,628.25 | | | Idaho Creek Drainage Study | WCR 7.5 to Stagecoach Rd | \$400,000.00 | | | Lone Tree Creek Drainage | Pierce Pit Study | \$1,580,838.90 | | | WCR 49 Drainage | WCR 49 Master Drainage Improvements | \$1,699,560.00 | | | WCR 108/110/120 | Low Water Crossing | \$1,233,980.73 | | | Bridge 19/46.5A | Bridge Improvement | \$2,757,310.00 | | | Bridge 6/17A | Bridge Improvement | \$3,950,000.00 | | | Bridge 2.5/27A | Bridge Improvement | \$3,950,000.00 | | | Bridge 54/13A | Bridge Improvement | \$6,252,272.00 | | | Bridge 13/44B | Bridge Improvement | \$3,950,000.00 | | | Bridge 60.5/49A | Bridge Improvement | \$3,565,000.00 | | | US 85 and WCR 44 (Peckham) | Interchange Improvement | CDOT | | | WCR 44 ACP | WCR 44 from WCR 49 to SH 60 | In House | | | WCR 13 ACP | WCR 13 from WCR 2 to SH 60 | In House | | | WCR 2 ACP | WCR 2 from WCR 11 to I-76 | In House | | | WCR 19 ACP | WCR 19 from WCR 2 to SH 66 | In House | | | Total Estimated Cost Estimate for Short-Range Capital Improvement Projects | | | | Table 11: Mid-Range Capital Improvement Project List (2026-2035) | Capital Improvement Project | Description | Cost Estimate | |---|---|--------------------------| | WCR 28 from WCR 5 to I-25 | Widen to 3 Lane Collector Standard | \$9,861,942.00 | | WCR 44 and WCR 49 | Grade Separation Improvement | \$20,000,000.00 | | WCR 6 and WCR 23 | Intersection Improvement (Auxiliary Turn Lanes) | \$5,796,333.88 | | WCR 2 and WCR 45 | Intersection Improvement (Auxiliary Turn Lanes) | \$5,547,342.38 | | WCR 6 and WCR 19 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,396,456.50 | | WCR 66 and US 85 | Intersection Improvement (Signal) | CDOT | | WCR 64.75 and WCR 23.75 | Intersection Improvement | \$5,547,342.38 | | WCR 64.75 to WCR 23.75 | Reconfiguration | Joint Greeley
Project | | WCR 66 from WCR 23.75 to Greeley CL
(West of WCR 31) | Pave Roadway | \$5,149,044.00 | | WCR 32 and WCR 39 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,396,456.50 | | WCR 74 and WCR 51 | Intersection Improvement (Reconfiguration) | \$7,396,456.50 | | WCR 35 from SH 392 North to Ault City Limits | Widen to 3 Lane Collector Standard | \$24,654,855.00 | | US 85 and WCR 40 | Intersection Improvement (Frontage Road
Realignment) | CDOT | | US 85 and WCR 80 | Intersection Improvement | CDOT | | WCR 22 from US 85 to WCR 49 | Widen to 3 lane Collector Standard | \$54,240,681.00 | | US 85 and WCR 28 | Intersection Improvement (SPUI) | CDOT | | SH 392 and WCR 33 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 392 and WCR 27 (North and South) | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 392 and WCR 55 | Intersection Improvement (Signal) | CDOT | | SH 392 and WCR 43 | Intersection Improvement (Signal) | CDOT | | SH 392 and WCR 23 | Intersection Improvement (Signal) | CDOT | | SH 392 and WCR 31 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 14 and WCR 33 | Intersection Improvement (Signal) | CDOT | | WCR 23 from WCR 18 to Ft Lupton CL | Rebuild and Widen to add Shoulders | \$3,428,258.75 | | WCR 74 from WCR 27 to WCR 35 | Realignment and Widening to add Shoulders | \$14,998,376.00 | | WCR 66 around Seeley Lake | Rebuild and add Shoulders | \$4,274,537.16 | | F Street from WCR 31 to WCR 33 | Rebuild and Widen to add Shoulders | \$2,999,675.20 | | |--|---|-----------------|--| | WCR 54 from WCR 43 to WCR 45 | Widen to add Shoulders / Potential Realignment | \$3,749,594.00 | | | WCR 53 from US 34 to WCR 60.5 | Rebuild and Widen to add Shoulders | \$11,373,985.00 | | | WCR 55 from WCR 60.5 to SH 392 | Rebuild and Widen to add Shoulders | \$15,123,579.00 | | | WCR 29 from WCR 70 to WCR 74 | Pave Roadway | \$5,869,001.00 | | | WCR 39 from WCR 44 to LaSalle CL | Rebuild and Widen to add Shoulders | \$10,123,903.80 | | | WCR 17 from WCR 32 to SH 66 | Rebuild and Widen to add Shoulders | \$4,686,992.5 | | | WCR 20.5 from WCR 1 to WCR 7 | Rebuild and Widen to add Shoulders | \$11,248,782.00 | | | WCR 22 and WCR 41 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,396,456.50 | | | WCR 39 and WCR 44 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,396,456.50 | | | WCR 22 ACP | WCR 22 from WCR 49 to US 85 | In House | | | WCR 77 ACP | WCR 77 from SH 14 to WCR 138 | In House | | | WCR 35 ACP | WCR 35 from O Street to SH 14 | In House | | | WCR 17 ACP | WCR 17 from SH 66 to Crossroads Blvd | In House | | | Total Estimated Cost Estimate for Mid-Range Capital Improvement Projects | | | | Table 12: Long-Range Capital Improvement Project List (2036-2045) | Capital Improvement Project | Description | Cost Estimate | |--|--|-----------------| | US 85 and WCR 6 | Interchange Improvement (Partial Cloverleaf) | CDOT | | WCR 27 from WCR 76.5 to WCR 78 | Construct New Two-Lane Gravel Road | \$858,174.00 | | WCR 7 from SH 56 to WCR 48 | Pave Roadway | \$7,499,188.00 | | WCR 13 from WCR 48.5 to US 34 | Widen to 3 Lane Collector Standard | \$21,548,343.27 | | WCR 37 from SH 392 to Eaton CL | Widen to 3 Lane Collector
Standard | \$12,327,427.5 | | 2 Rivers Parkway from WCR 396 Evans CL | Widen to 3 Lane Collector Standard | \$15,433,939.23 | | WCR 31 from Greeley CL to SH 392 | Widen Roadway to 4 Lanes | \$6,646,885.00 | | 35th Ave/WCR 35 from O Street to SH 392 | Widen Roadway to 4 Lanes | \$13,293,770.00 | | Drainage Improvements | Drainage Improvements for Weld County Unincorporated Communities | Varies | | WCR 49 between WCR 2 and WCR 4 | Construct New Alignment (Imboden Study) | \$2,145,435.00 | | I-76 at WCR 49 | Interchange Improvement | CDOT | | WCR 17 from Johnstown CL to Greeley CL
(South of US 34) | Widen to 3 Lane Collector Standard | \$18,491,141.25 | | WCR 22 and WCR 49 | Intersection Improvement (Grade Separation) | \$20,000,000.00 | | WCR 55 and WCR 74 | Intersection Improvement (Auxiliary Turn Lanes) | \$5,796,333.88 | | WCR 23 and WCR 20 | Intersection Improvement (Auxiliary Turn Lanes) | \$3,947,219.75 | | WCR 17 and WCR 34 | Intersection Improvement (Auxiliary Turn Lanes) | \$7,396,456.50 | | US 34 and WCR 45 | Intersection Improvement (Auxiliary Turn Lanes on WCR 45) | CDOT | | US 34 and WCR 45.5 | Intersection Improvement (Auxiliary Turn Lanes on WCR 45.5) | CDOT | | US 34 and WCR 47 | Intersection Improvement (Auxiliary Turn Lanes on WCR 47) | CDOT | | US 34 and WCR 47.5 | Intersection Improvement (Auxiliary Turn Lanes on WCR 47.5) | CDOT | | SH 66 and WCR 1 | Intersection Improvement (Grade Separation) | CDOT | | SH 66 and WCR 3 | Intersection Improvement (Signal) | CDOT | | SH 66 and WCR 5 | Intersection Improvement (Signal) | CDOT | | SH 66 and WCR 17 (North and South) | Intersection Improvement (Signal or Roundabout) | CDOT | | SH 66 and WCR 19 | Intersection Improvement (Signal or Roundabout) | CDOT | | 1-76 and WCR 386 | Interchange Improvement | CDOT | | US 85 and WCR 26 | Intersection Improvement (SPUI) | CDOT | |--|--|------| | US 85 and WCR 24.5 | Right-in/Right-out | CDOT | | US 85 and WCR 90 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 14 and WCR 31 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | US 85 and WCR 35/WCR 46 | Intersection Improvement (Channelized-T) | CDOT | | SH 392 and WCR 51 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | US 85 and WCR 22 | Intersection Improvement (Diamond Interchange) | CDOT | | US 85 and WCR 36 | Interchange Improvement/Realignment | CDOT | | US 85 and WCR 38 | Interchange Improvement/Realignment | CDOT | | SH 14 and SH 392 and WCR 77 | Intersection Improvement (Auxiliary Turn Lanes on WCR 77 and SH 392) | CDOT | | SH 14 WCR 90 and WCR 57 | Intersection Improvement/Realignment | CDOT | | US 34 and WCR 50 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 52 and WCR 59 | Intersection Improvement (Auxiliary Turn Lanes on WCR 59) | CDOT | | US 85 and WCR 20 RI/RO (west side) Closure (east side) | Intersection Configuration Change | CDOT | | SH 14 and WCR 89 | Intersection Improvement (Auxiliary Turn Lanes) | CDOT | | SH 14 and WCR 29 | Intersection Improvement (Signal) | CDOT | | WCR 8 and I-76 | Interchange Improvement | CDOT | | Total Estimated Cost Estimate for Long-Range Capital Improvement Projects \$135,384,313.38 | | | | Total Estimated Cost Estimate for all Capital Improvement Projects | \$606,111,342.89 | |--|------------------------------| | rolar Estimated Cost Estimate for all Capital Improvement Projects | Q000,111,0 12 .07 | Since these projects are unfunded, this list does not guarantee the improvements will be constructed in the next 25 years, but it is intended to identify the transportation needs for Weld County. Weld County Public Works budget for 2020 totaled approximately \$65,000,000. The Public Works Fund records all costs related to road and bridge construction and maintenance. This fund is also utilized for allocation of monies to cities and towns for use in their road and street activities. Collectively, the list of projects identifies the County's needs for the next 25 years. Based on current funding levels and the amount of need identified, Weld County should focus on maintaining the existing roadway system and the short-range project list. Should additional grant funding become available, new roads will be considered for future construction. # CAPITAL IMPROVEMENTS PLAN Weld County maintains a 5-year CIP, which is updated annually. This CIP includes projects that are typically related to transportation but can include other projects within the Public Works budget. The plan serves as a guide for funding and schedule of short-term imminent projects within the County and ensures a fair and reasonable determination of project priorities in accordance with the County's overall transportation needs. Decision makers can allocate resources within the timeline, prioritize future projects, and ensure financial resources are available. The plan, which is approved by the BOCC annually, allows the public to see what projects will be completed within the next 5 years. ## STRATEGIES Weld County Public Works is recommending implementation of the following transportation planning strategies: - 1. Safety is a priority to Weld County's transportation network. Weld County Public Works will continue to implement transportation improvements that enhance the level of safety on the roadway network as a part of the CIP. - Protect the investment of existing infrastructure by placing an emphasis on maintaining and upgrading existing transportation facilities over the provision of new facilities. - 3. The Roadway Master Plan represents a general project list that identifies projects for the collector and arterial roadway system. Tables 10-12 includes the short-, midand long-range projects, implementation timing, and conceptual cost estimates. The roadway cost estimates are included separately in Appendix E. Most projects are unfunded but have been identified for the sole purpose of funding allocation. The project list and concept level cost estimates assist the County with looking at funding so planning of future Impact Fees and other funding sources, such as grants, can be procured. However, the current CIP includes the short-range projects from 2019-2023. - 4. Weld County should consider developing a County-wide Regional Transit Plan. The plan should build on the NFRMPO's Regional Transit Element and Coordinated Public Transit/Human Services Transportation Plan, DRCOG's Coordinated Transit Plan, the Upper Front Range Coordinated Public Transit and Human Services Transportation Plan, and the North Front Range Premium Transit Analysis. - 5. Weld County should continue to partner with the local jurisdictions to support regional planning, trails coordination, and infrastructure development. - 6. The County realizes each local jurisdiction has plans for their community outside the jurisdiction's current corporate limits. The key consideration for these "in between" areas is communicating urban and rural roadway transitions between the municipality and the County. Since these areas have a high potential to be developed by the local jurisdiction using urban roadway standards, the municipality's cross-sections would make a good starting point for consideration. Any issues or development proposals within these growth boundaries should include participation of both the local jurisdiction and the County through a Public Works/Planning referral process. - 7. Coordinate the CIP with the short-range improvements identified in the Transportation Plan. - 8. The Weld County Functional Classification Map shown in **Figure 32** should be updated every two years. In addition, the Transportation Plan should be updated in conjunction with the Weld County Comprehensive Plan. - 9. The road impact fee should be revisited every ten years to ensure consistency with the Transportation Plan and current growth and development. - 10. To ensure safety and functionality is a priority of the arterial roadway network, new ACPs should be considered for all arterial roadways that currently do not have an ACP. - 11. Coordinate recent changes to County Code with the Planning Department. ## APPENDIX A – TRAFFIC MODEL ROADWAY INVENTORY The Weld County Traffic Model Roadway Inventory identifies roadway inventory data needed for development of the Weld County Transportation Plan. The spreadsheet includes the following: - Road Defines study segment - From Defines starting point of study segment - To Defines ending point of study segment - Length Length of study segment - 2015 ADT Value calculated by factoring the existing count data to a uniform base year - 2045 ADT Value developed through the Weld County Traffic Model, utilizing the CDOT Focus, DRCOG, and NFRMPO traffic models for the forecast year of 2045 - 2015 Truck Volume Value for truck traffic calculated by factoring the existing count data to a uniform base year - 2045 Truck Volume Value for truck traffic developed through the Weld County Traffic Model, utilizing the CDOT Focus, DRCOG, and NFRMPO traffic models for the forecast year of 2045 - 2045 V/C Volume to capacity calculation for the forecast year of 2045 - Subarea The study area that the road segment is in. Subareas assist in growth forecasts. - Total Lanes Traffic lanes for the road segment. - Capacity for AB Direction Roadway capacity for AB direction. - Capacity for BA Direction Roadway capacity for BA direction. - Forecast Source Volume source for the traffic forecast - o "Use Model" the forecasts are from FOCUS model - "Use Count" the forecasts are based on traffic counts - "No Model No Count Derived" the forecasts are derived based on connecting link volume information - "No Model No Count" the forecasts are based on median volume information from same subarea category | Road | From |
То | Length | 2015 ADT | 2045 ADT | 2015 Truck
Volume | 2045 Truck
Volume | 2045 V/C | Subarea | Total Lanes | Capacity for AB Direction | | Forecast Source | |------------------|-------------------------|----------------------|----------------------|--------------|-------------------------|----------------------|----------------------|--------------|----------|-------------|---------------------------|-------------------------|--| | 1 | STR | CR 46 | 1.59 | 0 | 3530 | 0 | 310
0 | 0.13 | 5 | 2 | 13200 | 13200 | Use Model | | 1 | CR 48
BOULDER N COLI | COLI
STR | 0.44
2.42 | 0 | 4140 | 0 | 330 | 0.00
0.14 | 5 | 2 | 14400
14400 | 14400
14400 | No Model No Count
Use Model | | 1 | CR 46
COLI | CR 48
SH 60 | 1.01
0.68 | 0 | 2900
1930 | 0 | 190
90 | 0.11
0.07 | 5
5 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Model | | 2 | CR 39
STR | STR
CR 47 | 1.26
0.40 | 2624
1650 | 5160
2150 | 367
182 | 720
350 | 0.18
0.11 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 2 | CR 45 | STR | 0.60 | 1650 | 3420 | 182 | 380 | 0.12 | 7 | 2 | 14400 | 14400 | Use Count | | 2 | COLI
CR 63 | STR
CR 65 | 0.06
1.00 | 10 | 0
10 | 3 | 0 | 0.00 | 7 | 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Count | | 3 | CR 12
CR 10 | SH 52
CR 1.5 | 1.02
0.28 | 1020 | 2490 | 0
116 | 130
190 | 0.09
0.16 | 6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 3 | CR 8 | CL ERIE | 0.65 | 1929 | 3130
3130 | 0 | 100 | 0.12 | 6 | 2 | 13200 | 13200 | Use Model | | 3 | CR 1.5
CR 34 | CR 10.5
CR 38 | 0.24
2.01 | 2034
182 | 7950
420 | 122
41 | 480
90 | 0.30
0.04 | 6
5 | 2 | 13200
6000 | 13200
6000 | Use Count
Use Count | | 3 | CR 28 | SH 66
CR 32 | 0.95
0.50 | 0
168 | 440
360 | 0
32 | 50
70 | 0.04 | 6
5 | 2 | 6000
6000 | 6000
6000 | No Model No Count Derived Use Count | | 3 | CL
CR 38 | CL/SH 56
URBDRY | 0.51
1.47 | 0
307 | 410 | 0
71 | 80
150 | 0.01
0.05 | 5 | 2 | 14400 | 14400 | No Model No Count Derived | | 3 | URBDRY | STR | 0.60 | 174 | 410 | 35 | 80 | 0.03 | 5 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 3 | SRFCH
STR | CL BERTHOUD
SRFCH | 0.15
0.29 | 0 | 410
410 | 0 | 80
80 | 0.01 | 5
5 | 2 | 14400
6000 | 14400
6000 | No Model No Count Derived
No Model No Count Derived | | 3 4 | SH 56
CR 7 | SH 60
END | 3.00
0.50 | 110
0 | 250
0 | 21
0 | 50
0 | 0.02 | <u>5</u> | 2 | 6000
13200 | 6000
13200 | Use Count
No Model No Count | | 4 | CR 15
CR 11 | STR
GATE | 0.69
0.29 | 59
0 | 5740 | 15
0 | 300 | 0.48 | 6 | 2 | 6000 | 6000 | Use Model | | 4 | CR 13 | CR 15 | 1.00 | 74 | 3440 | 15 | 0
230 | 0.29 | 6
6 | 2 | 1800
6000 | 1800
6000 | No Model No Count
Use Model | | 4 | CR 17
STR | CR 19
CR 17 | 1.00
0.33 | 74
59 | 1190
2040 | 15
15 | 90
130 | 0.10
0.17 | 6 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 4 | CR 19
SRFCH | CR 21
CR 81 | 1.00
2.59 | 58 | 660 | 25
0 | 60
0 | 0.06 | 6 | 2 | 6000
6000 | 6000
6000 | Use Model
No Model No Count | | 4 | CR 49 | STR | 1.53 | 0 | 1620 | 0 | 40 | 0.14 | 7 | 2 | 6000 | 6000 | Use Model | | 4 | CL
SH 85 | CR 31
CR 27 | 1.62
0.32 | 2592
1943 | 7130
3920 | 467
466 | 630
940 | 0.25
0.14 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 4 4 | CL BRIGHTON
STR | CL BRIGHTON
STR | 1.01
0.83 | 0
439 | 260
640 | 0
92 | 0
10 | 0.01
0.02 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 4 | STR | STR | 0.20 | 0 | 1610 | 0 | 60 | 5.59 | 7 | 2 | 14400 | 14400 | Use Model | | 4 | CL
STR | STR
STR | 0.71
0.29 | 688
0 | 640 | 151
0 | 290
10 | 0.17
0.02 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 4 | STR
STR | CR 49
CR 45 | 1.51
0.78 | 260
439 | 1620
640 | 42
92 | 40
10 | 0.14
0.02 | 7 7 | 2 2 | 6000
14400 | 6000
14400 | Use Model
Use Model | | 4 | CR 45
STR | STR
CR 55 | 0.50
1.47 | 260 | 1530
1540 | 42
0 | 50
30 | 0.13
0.13 | 7 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 4 | CR 67 | CR 69 | 1.00 | 20 | 30 | 3 | 0 | 0.00 | 7 | 2 | 6000 | 6000 | Use Count | | 4 | CR 73
CR 81 | SRFCH
CR 95 | 1.42
7.00 | 0 | 0 | 0 | 0 | 0.00 | 8
8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 4 5 | CR 95
CR 6 | CR 97
CR 8 | 1.00
1.00 | 0 | 0
5120 | 0 | 0
190 | 0.00
0.19 | 8
6 | 2 | 6000
13200 | 6000
13200 | No Model No Count
Use Model | | 5 | CR 4 | CR 6 | 1.00 | 0 | 4810 | Ö | 160 | 0.18 | 6 | 2 | 13200 | 13200 | Use Model | | 5 | CL
CL | CR 12
CR 7 | 0.50
0.71 | 0 | 4310
4720 | 0 | 190
150 | 0.16
0.18 | 6
6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 5
5 | RRX
CR 26 | SH 66
RRX | 1.40
0.61 | 234
213 | 1780
2510 | 33
23 | 100
130 | 0.15
0.21 | 6 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 5
5 | CR 32
CL MEAD | CL MEAD
CL MEAD | 0.37
0.35 | 1489
915 | 1310 | 74
82 | 70
70 | 0.05
0.05 | 5
5 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 5 | STR | SH 56 | 0.92 | 371 | 1970 | 67 | 360 | 0.07 | 5 | 2 | 14400 | 14400 | Use Count | | <u>5</u> | CR 36
CR 34.75 | CR 38
CR 36 | 0.89
0.34 | 108
463 | 1000 | 10
51 | 20
110 | 0.02 | 5
5 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 5 | CR 34.5
CR 40.5 | CR 34.75
CR 42 | 0.23 | 510
349 | 1100
1850 | 66
63 | 140
330 | 0.09 | 5 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 5 | CL
URBDRY | URBDRY | 0.06 | 109 | 290 | 12
12 | 30
30 | 0.02
0.02 | 5 | 2 | 6000 | 6000
6000 | Use Count | | 5 | CR 42 | CR 40.5
STR | 0.06
0.09 | 109
371 | 1970 | 67 | 360 | 0.07 | 5 | 2 | 6000
14400 | 14400 | Use Count
Use Count | | 5
6 | SH 56
URBDRY | SH 60
STR | 3.22
1.00 | 100
2651 | 3020 | 19
795 | 30
180 | 0.06
0.10 | 6 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Model | | 6 | CL ERIE
CR 15 | SERVICE RD
CR 17 | 0.50
1.00 | 0
2768 | 8570
11380 | 0
858 | 950
3530 | 0.32
0.40 | 6 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Count | | 6 | CR 11 | RRX | 0.31 | 1962 | 7710 | 785 | 730 | 0.29 | 6 | 2 | 13200 | 13200 | Use Model | | 6
6 | CR 13
RRX | CR 15
CR 13 | 1.00
0.69 | 3190
1962 | 7710 | 1117
785 | 4370
730 | 0.43
0.29 | 6
6 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Model | | 6
6 | CR 17
STR | CR 19
STR | 1.00
0.43 | 2719
2596 | 11180
10680 | 870
727 | 3580
2990 | 0.39
0.37 | 6
6 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 6 | CR 19
STR | STR
STR | 0.27
0.10 | 2596
2596 | 10680 | 727
727
727 | 2990
2990 | 0.37
0.37 | 6 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 6 | STR | CR 21/URBDRY | 0.20 | 2596 | 10680 | 727 | 2990 | 0.37 | 6 | 2 | 14400 | 14400 | Use Count | | 6
6 | CR 47
CL | END
CR 29 | 1.55
0.04 | 85
270 | 3890 | 26
30 | 40
280 | 0.01
0.32 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Model | | 6
6 | STR
STR | STR
URBDRY | 0.26
0.45 | 3390
0 | 3310
3610 | 1288
0 | 200
210 | 0.11
0.13 | 6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 6 | CR 23
URBDRY | STR
STR | 0.05
0.41 | 0 | 3610 | 0
1288 | 210
200 | 0.13
0.11 | 6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 6 | STR | STR | 0.29 | 0 | 3310 | 0 | 200 | 0.11 | 6 | 2 | 14400 | 14400 | Use Model | | 6
6 | STR
CR 31 | SH 85
CR 33 | 0.13
1.00 | 1136
311 | 750 | 0
81 | 200
40 | 0.11
0.06 | 6
7 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Model | | 6
6 | CR 29
URBDRY | CR 31
CR 33.8 | 1.06
0.75 | 259
66 | 600
540 | 36
14 | 40
30 | 0.05
0.05 | 7 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 6 | CR 33.8
CR 41 | END
END | 0.13
0.62 | 0
63 | 540 | 0 | 30
0 | 0.02
0.01 | 7 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Count | | 6 | BEGIN | CR 41 | 0.28 | 0 | 0 | Ö | Ŏ | 0.00 | 7 | 2 | 6000 | 6000 | No Model No Count | | 6
6 | CR 59
CR 55 | CR 65.8
STR | 3.82
1.78 | 49
66 | 70
90 | 9
14 | 10
20 | 0.01
0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 6
6 | STR
BGN | CR 59
CR 71 | 0.23
0.48 | 66
0 | 90 | 14
0 | 20
0 | 0.01
0.00 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 6 | CR 67 | SH 79 | 0.86 | 19
0 | 210 | 7
0 | 10
0 | 0.02 | 7 | 2 | 6000 | 6000 | Use Model | | 6 | SH 79
BGN | END
CR 87 | 0.52
0.31 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 6
7 | CR 95
CR 16 | END
STR | 0.42
0.50 | 0
1784 | 0
3210 | 0 | 0
110 | 0.00
0.12 | 8
6 | 2 2 | 6000
13200 | 6000
13200 | No Model No Count
Use Model | | 7 | CL ERIE
CL BROOM | CR 8
CL ERIE | 1.50
1.00 | 0 | 7880 | 0 | 570
1500 | 0.30
0.50 | 6
6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 7 | CR 8 | RRX | 1.18 | 0 | 7260 | 0 | 430 | 0.28 | 6 | 2 | 13200 | 13200 | Use Model | | 7
7 | RRX
CR 18 | CR 12
CR 20 | 0.83
1.01 | 0
2204 | 4560
4960 | 0
419 | 200
150 | 0.17
0.19 | 6
6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 7 7 | CR 20
CR 26 | CR 2050
CL MEAD | 0.50
0.48 | 0
1146 | 9670
3820 | 0
92 | 330
250 |
0.37
0.14 | 6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 7 | CR 32
STR | CL MEAD
SH 56 | 0.50
0.49 | 1354 | 8050 | 0 | 540
400 | 0.28
0.27 | 5 | 2 | 14400
14400 | 14400 | Use Model | | 7 | CL | CR 38 | 0.38 | 1257 | 8670 | 101 | 480 | 0.33 | 5 | 2 | 13200 | 14400
13200 | Use Model
Use Model | | 7 | CL BERTHOUD
CL | STR
CL BERTHOUD | 1.27
0.25 | 0 | 7710
6660 | 0 | 400
410 | 0.29
0.56 | 5
5 | 2 | 13200
6000 | 13200
6000 | Use Model
Use Model | | 7 | CR 48 | SH 60
RRX | 0.96 | 3693 | 10380 | 443 | 630 | 0.36
0.07 | 5 | 2 | 14400 | 14400 | Use Model | | 7 | SH 56
RRX | CR 48 | 1.51
0.55 | 486
553 | 5190 | 78
88 | 170
220 | 0.09 | 5 | 4 | 28800
28800 | 28800
28800 | Use Model
Use Model | | 8
8 | URBDRY
CR 7 | STR
STR SH 25 | 0.96
0.82 | 164
0 | 9530
23390 | 49
0 | 740
2070 | 0.66
0.65 | 6
6 | 2 | 7200
18000 | 7200
18000 | Use Model
Use Model | | 8
8 | CR 3
STR | CR 5
CR 3 | 1.00
0.32 | 0 | 19940 | 0 | 1290
1280 | 0.55
0.59 | 6 | 2 | 18000
18000 | 18000
18000 | Use Model
Use Model | | 0 | CR 5 | CR 7 | 1.01 | 0 | 19910 | 0 | 1470 | 0.55 | 6 | 2 | 18000 | 18000 | Use Model | | | | | | | | 28 | | 0.55 | 6 | . 2 | 7200 | 7200 | Use Model | | 8
8 | CL
RRX | CR 19
RRX | 1.56
0.76 | 103
0 | 16190 | 0 | 570
1720 | 0.45 | 6 | 2 | 18000 | 18000 | Use Model | | 8
8
8
8 | | | 0.76
0.64
0.49 | | 16190
20110
10180 | | 1720
2160
640 | | | 2 2 2 | | 18000
18000
19200 | Use Model
Use Model
Use Model | | <u>8</u> | CR 19
CR 47 | URBDRY
CR 51 | 1.01
1.98 | 176
47 | 9060
70 | 62
8 | 700
10 | 0.63
0.01 | 6
7 | 2 | 7200
6000 | 7200
6000 | Use Model
Use Count | |----------------------|-------------------------|-----------------------------|----------------------|----------------|---|---------------|--------------------|----------------------|--------|-----------------------|-------------------------|-------------------------|--| | 8
8 | CR 31 | CR 37 | 3.01
0.10 | 0 | 3590 | 0 | 210 | 0.09 | 7 | 2 | 19200 | 19200 | Use Model
Use Model | | - 8
8 | SRFCH
CR 23 | STR
CL FORT LUPTON | 0.50 | 148 | 9340 | 43 | 740
740 | 0.65 | 6 | 2 | 19200
7200 | 19200
7200 | Use Model | | | STR
STR | STR
SRFCH | 0.04
0.46 | 0 | 9530
9340 | 0 | 740
740 | 0.66
0.24 | 6 | 2 | 7200
19200 | 7200
19200 | Use Model
Use Model | | 8 | CL FORT LUPTON
STR | STR
SH 85 | 0.25
0.20 | 148
135 | 9340 | 43
35 | 740
740 | 0.24
0.24 | 6 | 2 | 19200
19200 | 19200
19200 | Use Model
Use Model | | 8 8 | CR 29 | CR 31 | 0.99 | 1871 | 3690 | 674 | 220 | 0.10 | 7 | 2 | 19200 | 19200 | Use Model | | 8 | SH 76 ROW
CR 39 | STR
CL | 0.65
0.98 | 0
1402 | 3090 | 0
435 | 30
960 | 0.02
0.08 | 7 | 2 | 14400
19200 | 14400
19200 | Use Model
Use Count | | 8
8 | CR 37
STR | CR 39
CR 45 | 1.01
0.60 | 1275
0 | 2810
530 | 395
0 | 870
30 | 0.07
0.02 | 7 | 2 | 19200
14400 | 19200
14400 | Use Count
Use Model | | 8
8 | CR 63
CR 59 | SRFCH
CR 61 | 0.92
1.00 | 50
57 | 70
80 | 10
9 | 10
10 | 0.01
0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 8
8 | CR 61 | CR 63
CR 71 | 1.01
0.28 | 57
0 | 80 | 11
0 | 20 | 0.01
0.00 | 7 | 2 | 6000 | 6000 | Use Count | | - 8
8 | BGN
CR 67 | SH 79 | 1.00 | 75 | 100 | 19 | 30 | 0.01 | 7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | | CR 65
SRFCH | CR 67
CR 65 | 0.98
0.07 | 74
50 | 100
110 | 13
10 | 20
20 | 0.01
0.00 | 7 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | <u>8</u> | SH 79
CR 73 | BARR
CR 75 | 0.72
1.01 | 0 | 0 | 0 | 0 | 0.00 | 7 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 8
8 | CR 71
CR 91 | CR 73
CR 95 | 1.01
2.00 | 0 | Ŏ
O | 0 | 0 | 0.00
0.00 | 7 8 | 2 | 6000
6000 | 6000 | No Model No Count | | 8 | BGN | CR 81 | 0.50 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000
6000 | No Model No Count
No Model No Count | | 8.75
10 | BGN
CR 5 | CR 7
CR 7 | 0.50
1.01 | 0
108 | 4340 | 0
23 | 0
190 | 0.00
0.36 | 6
6 | 2 | 1800
6000 | 1800
6000 | No Model No Count
Use Model | | 10
10 | CR 15
CR 17 | CL
CR 19 | 0.05
0.99 | 0
98 | 1090
1210 | 0
24 | 70
60 | 0.09
0.10 | 6 | 2 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 10
10 | CL
CR 49 | CR 17
STR | 0.75
0.44 | 364
6 | 1090 | 138
0 | 70
10 | 0.09
0.01 | 6 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 10 | CR 3520 | STR | 0.17 | 390 | 770 | 51 | 100 | 0.13 | 7 | 2 | 3000 | 3000 | Use Count | | 10
10 | CL
CR 23 | CR 29
END | 0.25
0.43 | 454
0 | 650
0 | 118
0 | 170
0 | 0.02
0.00 | 6 | 2 | 14400
1800 | 14400
1800 | Use Count
No Model No Count | | 10
10 | CL FORT LUPTON
CR 31 | CL FORT LUPTON
END | 0.25
1.00 | 454
0 | 940
0 | 118
0 | 240
0 | 0.03 | 7 | 2 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 10
10 | CR 29
BARR | CR 31
CR 41 | 1.00
0.97 | 356
169 | 600
260 | 93
32 | 160
50 | 0.02
0.02 | 7 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 10 | STR | CR 37 | 0.45 | 0 | 0 | 0 | 0 | 0.00 | 7 7 | 2 | 3000 | 3000 | No Model No Count | | 10
10 | CR 45
RRX | CR 47
CL | 1.00
0.31 | 92 | 130 | 18
0 | 30
0 | 0.01
0.00 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 10
10 | CR 43
CR 47 | SH 76
CR 49 | 0.08
1.00 | 0
53 | 70
70 | 0
12 | 0
20 | 0.00
0.01 | 7
7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 10
10 | CR 59
STR | SH 79
STR | 5.00
3.11 | 112
56 | 3280
80 | 25
10 | 140
10 | 0.27
0.01 | 7
7 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Count | | 10
10 | CR 51
STR | STR
CR 59 | 0.29
0.62 | 29
94 | 40 | 6
13 | 10
20 | 0.00
0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 10 | SH 79 | CR 73 | 2.01 | 41 | 60 | 13
8 | 10 | 0.01 | 7 | 2 | 6000 | 6000 | Use Count | | 10
10 | CR 73
CR 81 | CR 75
CR 87 | 0.98
3.39 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 10
11 | CR 87
RRX | END
CR 8 | 0.64
0.24 | 0 | 9200 | 0 | 0
1400 | 0.00
0.35 | 6 | 2 2 | 6000
13200 | 6000
13200 | No Model No Count
Use Model | | <u>11</u> | CR 2
CL BROOM | CL WESTM
RRX | 1.01 | 0 | 11480
7460 | 0 | 2060
1190 | 0.43
0.28 | 6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 11
11 | CL DACONO
CR 10 | SH 52
CR 12 | 1.00 | 0 | 1910 | 0 | 60
60 | 0.07
0.07 | 6 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 11 | RRX CR 8 | CL DACONO | 0.25 | 0 | 2990 | 0 | 140 | 0.11 | 6 | 2 | 13200 | 13200 | Use Model | | 11
12 | CR 28
SRFCH | SH 66
END | 1.01
0.59 | 0 | 310 | 0 | 0
20 | 0.00
0.01 | 6
6 | 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Model | | 12
12 | CR 7
CR 3 | END
CR 5 | 0.91
1.04 | 0
541 | 5200
4870 | 0
54 | 200
180 | 0.20
0.18 | 6 | 2 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 12
12 | CR 15
CR 11 | CR 17
CL DACONO | 1.00
0.69 | 142
0 | 3290
4340 | 64
0 | 190
170 | 0.11
0.16 | 6 | 2 | 14400
13200 | 14400
13200 | Use Model
Use Model | | 12 | CR 13 | STR
CR 13 | 0.32 | 0 | 3900
4340 | 0 | 210 | 0.14 | 6 | 2 | 14400 | 14400 | Use Model | | 12
12 | STR | SPLIT | 0.30
0.02 | 0 | 3900 | Ö | 170
210 | 0.16
0.14 | 6 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Model | | 12
12 | CR 19
CR 21 | CR 21
SRFCH | 1.00
0.21 | 992
0 | 4080
310 | 298
0 | 1230
20 | 0.14
0.01 | 6 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | 12
12 | CR 31
CR 29.5 | CR 35
CR 31 | 2.01
0.50 | 330 | 0
870 | 0
89 | 230 | 0.00 | 7 | 2 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 12
12 | CL
CR 35 | CR 2950
BARR | 0.12
0.23 | 211 | 350 | 44
0 | 70
0 | 0.01
0.00 | 7 | 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 12 | CR 37 | END | 0.51 | 0 | Ŏ | 0 | 0 | 0.00 | 7 | 2 | 6000 | 6000 | No Model No Count | | 12
12 | GATE
BGN | CR 37
SRFCH | 0.42
0.28 | 0 | 500 | 0 | 0
30 | 0.00
0.04 | 7 | 2 | 14400
6000 | 14400
6000 | No Model No Count
No Model No Count Derived | | 12
13 | SRFCH
CR 50 | CR 41
SRFCH | 0.21
1.89 | 0
1135 | 500
14120 | 0
386 | 30
950 | 0.04
0.37 | 7
3 | 2 | 6000
19200 | 6000
19200 | Use Model
Use Model | | 13
13 | CR 16
CL DACONO | CL STR
CR 8 | 0.96
0.75 | 6000 | 19530
22480 | 720 | 1520
1970 | 0.43
0.49 | 6 | 2 | 22800
22800 | 22800
22800 | Use Model
Use Model | | 13
13 | 168TH AV
URBDRY | URBDRY
CL DACONO | 2.01
0.25 | 5915 | 23600 | 710
720 | 2050
1970 | 0.52
0.43 | 6 | 2 | 22800
26400 | 22800
26400 | Use Model
Use Model | | 13 | WIDCH | CR SPLIT | 0.50 | 6000 | 24530 | 0 | 1960 | 0.46 | 6 | 2 | 26400 | 26400 | Use Model | | 13
13 | CR 8
SPLIT | WIDCH
CR 12 / SCL | 1.01
0.50 | 0 | 26180
24530 | 0 | 2090
1960 | 0.50
0.46 | 6
6 | 2 | 26400
26400 | 26400
26400 | Use Model
Use Model | | 13
13 | SH 52
WIDCH | CR 16
CR 36 | 0.99
0.95 | 0
2812 | 21080
7240 | 0
337 | 1870
500 | 0.46
0.14 | 6
5 | 2 2 | 22800
26400 | 22800
26400 | Use Model
Use
Model | | 13
13 | CR 22
CR 20 | CL FIRESTONE
CR 22 | 1.43
0.99 | 0 | 13070
21870 | 0 | 830
1640 | 0.29
0.48 | 6 | 2 | 22800
22800 | 22800
22800 | Use Model
Use Model | | 13
13 | CR 18 | CR 20 | 1.00
0.05 | 0 | 20450 | 0 | 1540 | 0.45
0.43 | 6 | 2 | 22800 | 22800 | Use Model
Use Model | | 13 | STR
CR 22 | CR 18
CL FIRESTONE | 0.34 | 0 | 12840 | Ö | 1520
830 | 0.28 | 6 | 2 | 22800
22800 | 22800
22800 | Use Model | | 13
13 | CR 22
SH 66 | CL FIRESTONE
CL MEAD | 0.26
0.50 | 0 | 9390
9390 | 0 | 830
580 | 0.28
0.21 | 6
5 | 2 | 22800
22800 | 22800
22800 | Use Model
Use Model | | 13
13 | STR
URBDRY | SH 66
STR | 1.28
0.43 | 4022
4290 | 14350
14790 | 804
815 | 860
870 | 0.27
0.28 | 6 | 2 | 26400
26400 | 26400
26400 | Use Model
Use Model | | 13
13 | CL FIRESTONE
STR | URBDRY
STR | 0.06
0.24 | 0
4290 | 14790
14790 | 0
815 | 870
870 | 0.28
0.28 | 6 | 2 | 26400
26400 | 26400
26400 | Use Model
Use Model | | 13 | CR 32 | CR 34 | 1.01 | 4805 | 8230 | 1057 | 530 | 0.18 | 5 | 2 | 22800 | 22800 | Use Model
Use Model
Use Model | | 13
13 | CL MEAD
CR 34 | CR 32
WIDCH | 0.50
0.06 | 4402
0 | 7240 | 1101
0 | 580
500 | 0.21
0.14 | 5
5 | 2 | 22800
26400 | 22800
26400 | Use Model | | 13
13 | CR 42
RRX | CR 44
CR 40 | 1.00
0.51 | 3659
0 | 8310
6890 | 1171
0 | 460
430 | 0.29
0.26 | 5
5 | 2 | 14400
13200 | 14400
13200 | Use Model
Use Model | | 13
13 | CR 36
CR 38 | WIDCH
RRX | 0.99
0.50 | 2782
2592 | 7530
6890 | 334
467 | 550
430 | 0.26
0.24 | 5 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 13
13 | WIDCH
CR 40 | CR 38
CR 42 | 0.02
0.75 | 0 | 4020
6980 | 0 | 350
430 | 0.14
0.26 | 5 | 2 | 14400
13200 | 14400
13200 | Use Model
Use Model | | 13 | CR 42 | CR 42 | 0.25 | 3053
2340 | 6980 | 550
538 | 430 | 0.24 | 5 | 2 | 14400 | 14400 | Use Model | | 13
13 | SH 60
URBDRY | NCL JOHNSTOWN
CR 46 | 0.20
0.11 | 0
3924 | 5200 | 0
706 | 580
270 | 0.40
0.20 | 3
5 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 13
13 | STR
CR 44 | STR
STR | 0.45
0.05 | 3924
0 | 5200
5200 | 706
0 | 270
270 | 0.20
0.20 | 5
5 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 13
13 | STR
RRX | URBDRY
SH 60 | 0.39
0.50 | 3924
0 | 5200
3880 | 706
0 | 270
210 | 0.20
0.15 | 5 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 13 | SPLIT | CL | 0.11 | 0 | 8290
8290 | 0 | 430 | 0.31 | 3 | 2 | 13200 | 13200 | Use Model | | 13
13 | NCL JOHNSTOWN
CL | CL
SPLIT | 0.31
0.11 | 0 | 8290
8290 | 0 | 430
430 | 0.31
0.31 | 3 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 13
13 | CL
CR 88 | CR 50
CR 90 | 0.21
1.00 | 0 | 9540
4480 | 0 | 530
270 | 0.36
0.16 | 3
1 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Model | | 13
13 | URBDRY
STR | LARIMER CR 36
CL WINDSOR | 0.89
1.88 | 1674
1255 | 14340
16810 | 167
0 | 730
1260 | 0.37
0.44 | 3 | 2 | 19200
19200 | 19200
19200 | Use Model
Use Model | | 13 | RRX | RRX | 0.45
0.60 | 0
1465 | 12530
13390 | 0
381 | 830
920 | 0.33
0.35 | 3 | 2 | 19200
19200 | 19200
19200 | Use Model
Use Model | | | CBECH | | | | | | | | | | | | | | 13
13 | SRFCH
CR 54 | CR 56
STR | 0.31 | 1465 | 13020 | 381 | 900 | 0.34 | 3 | 2 | 19200 | 19200 | Use Model | | 13
13
13
13 | CR 54
SRFCH
STR | STR
CR 54
SRFCH | 0.31
0.10
0.08 | 1465
0
0 | 13020
16010
13020 | 381
0
0 | 900
1110
900 | 0.34
0.42
0.34 | 3 3 | 2 2 2 | 19200
19200
19200 | 19200
19200
19200 | Use Model
Use Model
Use Model | | 13
13
13 | CR 54
SRFCH | STR
CR 54 | 0.31
0.10 | 1465
0 | 13020
16010
13020
11940
10650 | 381
0 | 900
1110 | 0.34
0.42 | 3 | 2
2
2
2
2 | 19200
19200 | 19200
19200 | Use Model
Use Model | | 13 | WIDCH | RRX | 0.08 | 0 | 12010 | 0 | 800 | 0.31 | 3 | 2 19200 | 19200 | Use Model | |----------------|-------------------------|----------------------------------|----------------------|--------------|--------------------|---------------|-------------------|----------------------|--------|-------------------------------|-------------------------|--| | 13
13 | SH 34
RRX | STR
US 34 | 0.11
0.10 | 0 | 17630
12530 | 0 | 1330
830 | 0.49
0.44 | 3 | 2 18000
2 14400 | 18000
14400 | Use Model
Use Model | | 13
13 | CL
CL | STR
CI | 0.58 | 0 | 12280
13600 | 0 | 700
780 | 0.43
0.38 | 3 | 2 14400
2 18000 | 14400
18000 | Use Model
Use Model | | 13
13 | CL
SH 392 | CL
CR 32E (LARI) | 1.01 | 0 | 16930
11270 | 0 | 960
690 | 0.47
0.31 | 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 13
13 | URBDRY
68.5 | URBDRY
URBDRY | 0.35
0.35 | 0 | 16050 | 0 | 860
860 | 0.42
0.42 | 1 | 2 19200
2 19200 | 19200
19200 | Use Model
Use Model | | 13
13 | CR 80
CL | SH 14
COLI | 1.01
0.31 | 0 | 7020 | 0 | 300
550 | 0.20
0.36 | 1 1 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 13
13 | SH 14
STR | STR
CR 88 | 1.47
1.53 | 243
223 | 8070 | 0 | 400
180 | 0.21
0.11 | 1 1 | 2 19200
2 14400 | 19200
14400 | Use Model
Use Model | | 13
13 | LARIMER 56
CR 90 | LARIMER 58
LARIMER CR 56 | 1.01
1.00 | 58 | 910
2750 | 10
0 | 60
150 | 0.08
0.10 | 1 | 2 6000 | 6000 | Use Model
Use Model | | 13
13 | LARIMER CR 58
CR 96 | CR 96
LARIMER CR 62 | 1.00
1.00
0.98 | 0 30 | 0 | 0 | 0
10 | 0.10
0.00
0.01 | 1 | 2 14400
2 6000
2 6000 | 14400
6000
6000 | No Model No Count
Use Count | | 14 | SH 52
CL FORT LUPTON | WYE | 0.05 | 0
106 | 0 | 0 | 0
160 | 0.00 | 6 | 2 22800
2 14400 | 22800 | No Model No Count | | 14
14
14 | CL FORT LUPTON | CL FORT LUPTON
CR 21
CR 37 | 0.82
0.18
1.49 | 0
44 | 600 | 35
0
15 | 50
80 | 0.02
0.05
0.02 | 6 | 2 6000 | 14400
6000 | Use Count Use Model Use Count | | 14
14
14 | BGN
CR 59 | CR 41
CR 69 | 0.50
5.01 | 0 63 | 5310 | 0
17 | 800
20 | 0.02
0.44
0.01 | 7 7 7 | 2 6000
2 6000
2 6000 | 6000
6000
6000 | Use Model
Use Count | | 14 | CR 55 | END | 0.82 | 0 | 90 | 0 | 0 | 0.00 | 7 | 2 1800 | 1800 | No Model No Count | | 14
14 | BGN
CR 69 | CR 59
CR 71 | 0.51
1.00 | 0
27 | 40 | 6 | 0
10 | 0.00 | 7 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 14
15 | CR 81
STR | CR 91
URBDRY | 4.97
1.42 | 0
112 | 3010 | 0
24 | 0
170 | 0.00
0.25 | 8
6 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Model | | 15
15 | 168TH AV
URBDRY | STR
CL | 0.59
0.25 | 112
121 | 3310 | 24
39 | 240
180 | 0.44
0.28 | 6 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 15
15 | CR 12
CL DACONO | SPLIT
CR 10 | 0.51
0.03 | 0 | 4190
1090 | 0 | 240
70 | 0.15
0.09 | 6 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Model | | 15
15 | CR 10
SH 52 | CR 12
FIRST ST | 0.96
1.00 | 491
0 | 3290
1230 | 167
0 | 190
80 | 0.27
0.05 | 6 | 2 6000
2 13200 | 6000
13200 | Use Model
Use Model | | 15
15 | SPLIT
CR 34 | SH 52
CR 36 | 0.51
1.01 | 0
38 | 4190
90 | 0 | 240
20 | 0.15
0.01 | 5 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 15
15 | CL-FIRESTONE
CR 20 | CR 26
CR 24 | 0.53
1.00 | 173
0 | 300
4400 | 36
0 | 10
190 | 0.03
0.17 | 6 | 2 6000
2 13200 | 6000
13200 | Use Model
Use Model | | 15
15 | CL
CR 20 | CR 18
CR 24 | 0.50
0.63 | 0 | 1990
10720 | 0 | 80
670 | 0.08
0.41 | 6 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 15
15 | CR 20
SRFCH | CR 24
CR 26.7 | 0.39
0.41 | 0 | 880
2470 | 0 | 30
1680 | 0.03
0.21 | 6 | 2 13200
2 6000 | 13200
6000 | Use Model
No Model No Count Derived | | 15
15 | CR 26
CR 38 | SRFCH
RRX | 0.21
1.74 | 632
111 | 2470
280 | 430
30 | 1680
70 | 0.09
0.02 | 6
5 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 15
15 | URBDRY
CR 36 | CR 44
CR 38 | 1.00
1.02 | 0
56 | 0
140 | 0
8 | 0
20 | 0.00
0.01 | 5
5 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 15
15 | SH 60
RRX CL JOHNS | CL JOHNSTOWN
SH 60 | 0.50
0.99 | 0 | 5200
5080 | 0 | 230
200 | 0.20
0.19 | 3
5 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 15
15 | CL
SPLIT | CR 50
CL | 0.33
0.07 | 0 | 5200
5200 | 0 | 230
230 | 0.20
0.20 | 3 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 15
15 | RRX
SRFCH | URBDRY
CR 96 | 0.26
3.63 | 117
115 | 290
300 | 39
14 | 100
40 | 0.02
0.03 | 5
1 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 15
15 | CL
STR | CR 62
SH 34 | 1.01
0.81 | 150
602 | 5580
10190 | 21
96 | 340
690 | 0.47
0.35 | 3 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Model | | 15
15 | RRX
CR 54 | CR 56
RRX | 0.59
0.24 | 642
642 | 6700
6700 | 116
116 | 420
420 | 0.25
0.25 | 3 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 15
15 | RRX
CR 56 | RRX
STR | 0.17
0.17 | 642
0 | 6700
10190 | 116
0 | 420
690 | 0.25
0.39 | 3 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 15
15 | CL WINDSOR
CR 78 | CR 60
SH 14 | 0.50
2.00 | 0
46 |
8620
140 | 0
12 | 540
40 | 0.72
0.01 | 3
1 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 15
15 | CR 74
CR 72 | CL WINDSOR
CL | 0.78
0.46 | 567
2448 | 2320
4730 | 34
122 | 140
190 | 0.09
0.16 | 1 1 | 2 13200
2 14400 | 13200
14400 | Use Count
Use Model | | 15
15 | CL
SPLIT | SPLIT
CR 76 | 0.14
0.12 | 0 | 0 | 0 | 0 | 0.00
0.00 | 1 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | 15
15 | STR
SH 14 | CR 88
STR | 2.45
0.53 | 417
1109 | 380
4130 | 71
200 | 20
740 | 0.01
0.14 | 1 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Count | | 15
15 | CR 88
CR 106 | SRFCH
CR 110 | 0.36
1.96 | 0
27 | 300
50 | 0 | 40
0 | 0.01 | 1 8 | 2 14400
2 6000 | 14400
6000 | No Model No Count Derived
Use Count | | 15
15 | CR 102
CR 112 | CR 106
CR 120 | 1.99
4.00 | 41 | 70
0 | 0 | 0 | 0.01 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 15
16 | CR 110
URBDRY | CR 112
CR 21 | 0.99
1.98 | 0
350 | 0
720 | 0
74 | 0
30 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Model | | 16
16 | CL
CR 77 | URBDRY
CR 79 | 0.49 | 374
112 | 740
260 | 67
11 | 40
30 | 0.06
0.01 | 6 8 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Count | | 16
16 | CR 49
CR 31 | CR 51
CL FT LUPTON | 1.01
0.78 | 0 | 4390
0 | 0 | 310
0 | 0.15
0.00 | 7 7 | 2 14400
2 1800 | 14400
1800 | Use Model
No Model No Count | | 16
16 | CR 31
CR 29 | CR 31
CR 31 | 0.17
0.83 | 3167
3167 | 5910
4280 | 570
570 | 1060
770 | 0.21
0.15 | 7 7 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 16
16 | BGN
BGN | CR 41
CR 47 | 0.50
0.49 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 16
16 | CR 63
CR 51 | CR 69
CR 55 | 3.00
1.98 | 513
187 | 1040
4390 | 117
52 | 240
310 | 0.04
0.37 | 7 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Model | | 16
16 | CR 55
CR 69 | CL
CR 73 | 0.52
2.01 | 0 | 120
650 | 0
65 | 20
130 | 0.01
0.02 | 7 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Count | | 16
16 | CR 73
CR 89 | CR 77
CR 93 | 2.01
1.98 | 184
0 | 430 | 50
0 | 120
0 | 0.01
0.00 | 8 | 2 14400
2 6000 | 14400
6000 | Use Count
No Model No Count | | 16
17 | CR 79 | CR 81
CR 126 | 1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count No Model No Count | | 17
17
17 | CR 52
CR 16 | RRX
CR 18 | 0.47
0.99 | 6810
71 | 18360
160 | 613
17 | 1110
40 | 0.51
0.01 | 3 | 2 18000
2 6000 | 18000
6000 | Use Model
Use Count | | 17
17 | URBDRY
168TH AV | CR 10
CR 4 | 2.00
1.00 | 88
167 | 3120
4860 | 16
37 | 170
370 | 0.26
0.41 | 6 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 17
17
17 | STR
CR 4 | URBDRY
STR | 0.88
0.11 | 102 | 2810
2810 | 32
0 | 210
210 | 0.41
0.23
0.23 | 6
6 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 17
17
17 | CR 12
CR 12.5 | CR 12.5
SH 52 | 0.50
0.18 | 275
0 | 1320 | 140
0 | 670
0 | 0.05 | 6 | 2 14400
2 14400 | 14400
14400 | Use Count No Model No Count | | 17
17
17 | SH 52
CL | CR 14
WCR 16 | 0.17
0.50 | 0
73 | 0
120 | 0
28 | 0
50 | 0.00 | 6 | 2 13200
2 13200 | 13200
13200 | No Model No Count Use Count | | 17
17
17 | CR 34
STR | CR 36
CR 24 | 1.00
0.65 | 2746
106 | 7470
220 | 302
35 | 680
70 | 0.19
0.02 | 5 6 | 2 19200
2 6000 | 19200
6000 | Use Model
Use Count | | 17
17
17 | STR
CR 22 | STR
STR | 0.03
0.21
0.14 | 106
106 | 220 | 35
35 | 70
70
70 | 0.02
0.02 | 6
6 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 17
17
17 | SH 66
CR 28 | CR 32
RRX | 1.20
0.70 | 2137
87 | 220
5120
910 | 214
17 | 560
80 | 0.02
0.18
0.08 | 5 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Model | | 17
17 | RRX
CR 32 | SH 66
CR 34 | 0.70
0.31
1.00 | 0
2107 | 910
910
3680 | 0
211 | 80
410 | 0.08
0.08
0.13 | 6 | 2 6000
2 6000
2 14400 | 6000
6000
14400 | Use Model
Use Model
Use Model | | 17
17 | CL JOHNSTOWN
CR 38 | CR 44
CR 40 | 1.87
0.99 | 0
2348 | 15040
14210 | 0
235 | 1100
1110 | 0.13
0.42
0.39 | 5
5 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model
Use Model | | 17
17
17 | CR 36.5
CR 36 | CR 38
CR 36.5 | 0.52
0.50 | 2539
0 | 7470
7470 | 254
0 | 680
680 | 0.19
0.19 | 5 | 2 19200
2 19200 | 19200
19200 | Use Model
Use Model
Use Model | | 17
17
17 | CR 40
SH 60 | CL JOHNSTOWN
CL | 0.13
0.24 | 0 | 14210
16160 | 0 | 1110
840 | 0.39
0.45 | 5 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 17
17
17 | STR
CR 44 | CL / CR 4680
RRX | 0.24
0.85
0.73 | 0 | 20460 | 0 | 1070
930 | 0.45
0.57
0.48 | 5
5 | 2 18000
2 18000
2 18000 | 18000
18000
18000 | Use Model | | 17
17
17 | RRX
CR 4685 | STR
SH 60 | 0.19 | 0 | 17200 | 0 | 930
930
950 | 0.48 | 5 | 2 18000 | 18000 | Use Model Use Model | | 17
17
17 | CL / CR 4680 | CR 4685 | 0.14
0.10 | 0 | 17090
17090 | Ö | 940 | 0.48
0.47 | 5 | 2 18000
2 18000 | 18000
18000 | Use Model Use Model | | 17
17
17 | CR 50
RRX | CR 17
STR | 0.17
0.68 | 8750
8750 | 21070 | 963
963 | 1140
1140 | 0.59
0.59 | 3 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 17 | CR 17
STR | RRX
CR 52 | 0.10
0.06 | 0 | 21070
21070 | 0 | 1140
1140 | 0.59
0.59 | 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 17
17 | CL
CR 54 | CR 50
STR | 0.75
0.88 | 6233
4908 | 19330
17470 | 623
491 | 1030
1160 | 0.54
0.49 | 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 17
17 | RRX
STR | CR 54
CL GREELEY | 0.52
0.12 | 6810
0 | 18360
17470 | 613
0 | 1110
1160 | 0.51
0.49 | 3 3 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 17
17 | SH 14
CR 100 | END
CR 110 | 0.49
4.96 | 83
420 | 2170
650 | 8
71 | 160
110 | 0.08
0.05 | 1
8 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 17 | CR 126 | GATE | 0.56 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 17.75 | CR 74 | END | 0.37 | 0 | Λ | 0 | 0 | 0.00 | 1 | 2 | 13200 | 13200 | No Model No Count | |----------------|----------------------------|----------------------------|----------------------|--------------|----------------|------------|--------------|----------------------|--------|-----|----------------|----------------|--| | 18
18 | CR 17
CR 1 | CR 23
PRIVATE RD | 3.06
0.82 | 150
0 | 1440 | 38
0 | 80
0 | 0.12
0.00 | 6 | 2 | 6000
1800 | 6000
1800 | Use Model
No Model No Count | | 18 | CR 77 | CR 81 | 1.99 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 18
18 | SRFCH
CR 33 | CR 57
STR | 3.94
1.86 | 1026
0 | 2020
1690 | 375
0 | 740
140 | 0.07
0.14 | 7 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Model | | 18
18 | CL
CR 23 | CR 31
STR | 1.50
0.68 | 0
558 | 1330
2770 | 0
195 | 110
220 | 0.05
0.10 | 7
6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 18
18 | CR 31
CR 39 | CR 33
CR 41 | 0.99
1.00 | 733
159 | 1510
220 | 169
56 | 130
80 | 0.05
0.02 | 7 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Count | | 18
18 | CR 37
STR | CR 39
CR 37 | 0.98
0.17 | 171 | 380
1690 | 56
0 | 130
140 | 0.03
0.14 | 7 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Model | | 18 | CR 41 | GATE | 0.49 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 6000 | 6000 | No Model No Count | | 18
18 | CR 49
CR 63 | SRFCH
CR 65 | 0.02
1.00 | 1602
261 | 3230
350 | 545
89 | 1100
120 | 0.11
0.03 | 7 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 18
18 | CR 59
CL | CL
CR 59 | 1.05
0.54 | 0
1702 | 0
3440 | 0
953 | 0
1920 | 0.00
0.12 | 7 7 | 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Count | | 18
18 | CL KEENESBURG
CR 57 | MARKET ST
CL KEENESBURG | 0.13
0.14 | 1794
0 | 3620
130 | 753
0 | 1520
10 | 0.13 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | 18
18 | CL KEENESBURG
MARKET ST | CL KEENESBURG | 0.09 | 1794
1702 | 3620
3440 | 753
953 | 1520
1920 | 0.13
0.12 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 18
18 | CL KEENESBURG
CR 69 | CR 63
STR | 1.03
1.71 | 0 133 | 0 | 0
28 | 0
40 | 0.00
0.02 | 7 7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 18 | CR 67 | CR 69 | 1.01 | 133 | 180 | 27 | 40 | 0.02 | 7 | 2 | 6000 | 6000 | Use Count | | 18
18 | CR 65
CR 65.5 | CR 65.5
CR 67 | 0.49
0.51 | 182
182 | 250
250 | 47
47 | 60
60 | 0.02 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 18
18 | CR 73
STR | CR 77
CR 73 | 2.01
0.30 | 0 | 0
180 | 0 | 0
40 | 0.00
0.02 | 8
7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count Derived | | 18
19 | CR 93
CR 16 | COLI
CR 18 | 1.99
1.00 | 30
1949 | 50
8020 | 0
429 | 0
1760 | 0.00
0.28 | 8 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 19
19 | CR 8
168TH AV | CR 8
CR 4 | 0.14
1.00 | 0
905 | 9550 | 0
217 | 740
170 | 0.25
0.08 | 6 | 2
 19200
14400 | 19200
14400 | Use Model
Use Model | | 19 | CR 4 | STR | 0.97 | 977 | 2260 | 274 | 170 | 0.08 | 6 | 2 | 14400 | 14400 | Use Model | | 19
19 | CR 6
STR | CR 8
CR 6 | 0.92
0.04 | 1148
0 | 2990 | 413
0 | 210
170 | 0.10
0.08 | 6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 19
19 | CR 12
CR 10 | SH 52
CL DACONO | 0.51
0.25 | 992
0 | 2000
2310 | 298
0 | 120
130 | 0.07
0.08 | 6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 19
19 | WIDCH
CR 8 | CR 10
WIDCH | 0.97
0.03 | 1068
0 | 1580
1580 | 470
0 | 90
90 | 0.05
0.05 | 6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 19
19 | CR 10
CL FORT LUPTON | CR 12
CL FORT LUPTON | 0.75
0.25 | 0
1782 | 310
7330 | 0
392 | 20
1610 | 0.01
0.28 | 6 | 2 | 14400
13200 | 14400
13200 | Use Model
Use Count | | 19 | SH 52 | CR 14 | 0.52 | 1872 | 7700 | 449 | 1850 | 0.29 | 6 | 2 | 13200 | 13200 | Use Count | | 19
19 | CR 14
CL FORT LUPTON | CL FORT LUPTON
CR 16 | 0.25
0.50 | 1782
1782 | 7330 | 392
392 | 1610
1610 | 0.25
0.28 | 6 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Count | | 19
19 | CR 20
CR 18 | CR 22
CR 20 | 1.00
1.00 | 2479
2077 | 3290
8540 | 570
457 | 210
1880 | 0.12
0.30 | 6 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Count | | 19
19 | STR
CR 22 | CR 24
STR | 0.40
0.59 | 2369
2369 | 9740
9740 | 569
569 | 2340
2340 | 0.34
0.37 | 6 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Count | | 19
19 | SH 66
CR 28 | CR 34
SH 66 | 2.00
1.00 | 572
2689 | 1630
11060 | 143
565 | 160
2320 | 0.06
0.38 | 5
6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 19 | CR 26 | CR 28 | 1.01 | 2767 | 4420 | 609 | 280 | 0.15 | 6 | 2 | 14400 | 14400 | Use Model | | 19
19 | CR 38
CR 40 SL | CR 40 SL
CR 42 | 1.00
1.00 | 1810
0 | 9040 | 199
0 | 990
990 | 0.31
0.31 | 5 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count Derived | | 19
19 | CR 42
CR 44 | CL
STR | 0.75
1.62 | 2186
2167 | 10920
10830 | 284
282 | 1420
1410 | 0.38
0.41 | 5
5 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Count | | 19
19 | STR
STR | SH 60
CR 90 | 0.36
3.17 | 1300
115 | 5660
2010 | 15
17 | 70
90 | 0.21
0.17 | 3
1 | 2 | 13200
6000 | 13200
6000 | Use Count
Use Model | | 19
19 | CR 70
CR 78 | CR 72
SH 14 | 1.03
2.22 | 6572
115 | 22280
320 | 920
49 | 3120
130 | 0.77
0.03 | 1 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 19
19 | CR 72
SH 14 | CR 74
CL SEVERANCE | 0.83
0.51 | 5735
100 | 12670 | 1032
14 | 960
90 | 0.48
0.06 | 1 1 | 2 | 13200
14400 | 13200
14400 | Use Model
Use Model | | 19 | CL SEVERANCE | STR | 0.44 | 0 | 1810 | 0 | 90 | 0.15 | 1 | 2 | 6000 | 6000 | Use Model | | 19
19 | CR 90
CR 100 | CR 100
CR 102 | 4.92
1.00 | 90
60 | 720
140 | 32
8 | 30
20 | 0.06
0.01 | 8 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Count | | 19
20 | CR 122
STR | CR 124
CR 23 | 1.00
0.71 | 730 | 0
3820 | 0
117 | 0
220 | 0.00
0.10 | 8
6 | 2 | 6000
19200 | 6000
19200 | No Model No Count
Use Model | | 20
20 | CR 7
CR 15 | STR SH 25
SEC LINE | 0.93 | 0 | 9250
3800 | 0 | 320
210 | 0.26 | 6 | 2 | 18000
18000 | 18000
18000 | Use Model
Use Model | | 20
20 | SEC LINE
CR 19 | CR 19
CR 21 | 1.02
0.99 | 0
836 | 3290
1540 | 0
150 | 210
280 | 0.09
0.04 | 6 | 2 | 18000
19200 | 18000
19200 | Use Model
Use Count | | 20 | CR 21 | STR | 0.29 | 0 | 3380 | 0 | 190 | 0.09 | 6 | 2 | 19200 | 19200 | Use Model | | 20
20 | RRX
SH 85 | CR 37
RRX | 4.90
0.10 | 229
229 | 320
320 | 76
76 | 110
110 | 0.03
0.03 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 20
20 | CR 37
CR 41 | CR 41
END | 1.99
0.50 | 57
67 | 110
90 | 17
18 | 30
20 | 0.01
0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 20
20 | CR 53
CR 51 | CR 59
CR 53 | 3.00
1.00 | 45
42 | 60
60 | 9
13 | 10
20 | 0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 20
20 | CR 59
CR 67 | GATE
CR 69 | 0.99
0.99 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 20 | SRFCH | END | 0.15 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800 | 1800 | No Model No Count | | 20
20 | CR 69
WIDCH | SRFCH
END | 0.30
0.31 | Ŏ | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 20
21 | CR 93
CR 118 | WIDCH
CR 126 | 0.68
3.90 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 21
21 | CR 16
STR | CR 20
SRFCH | 1.99
0.49 | 116
0 | 2350
690 | 29
0 | 120
50 | 0.20
0.02 | 6 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Model | | 21 | 168TH AV | CR 4 | 1.00 | 164 | 1160 | 44 | 80 | 0.10 | 6 | 2 | 6000 | 6000 | Use Model | | 21
21
21 | CR 6
CL FORT LUPTON | STR
SH 52 | 0.51
1.50 | 277 | 690 | 75
171 | 50
700 | 0.02 | 6 | 2 | 14400 | 14400 | Use Model | | 21
21 | CR 8 | CL FORT LUPTON | 1.00 | 514
170 | 980 | 319 | 610 | 0.05
0.08 | 6 | 2 | 14400
6000 | 14400
6000 | Use Count Use Count | | 21
21 | SH 52
CL FORT LUPTON | CL FORT LUPTON
CR 16 | 1.25
0.27 | 170
189 | 810 | 34
42 | 50
60 | 0.02
0.07 | 6 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Model | | 21
21 | SH 66
CR 28 | CR 32.5
SH 66 | 1.50
1.00 | 1690
548 | 3000
2690 | 304
170 | 160
180 | 0.10
0.09 | 5
6 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 21
21 | CR 32.5
CR 34 | CR 34
LG | 0.49
0.24 | 1434
0 | 3000 | 359
0 | 160
0 | 0.10 | 5 | 2 | 14400
1800 | 14400
1800 | Use Model
No Model No Count | | 21
21 | CL MILLIKEN
CL MILLIKEN | CR 46
CL MILLIKEN | 0.50
0.10 | 0 | 9770
9770 | 0 | 700
700 | 0.37
0.81 | 5 | 2 | 13200
6000 | 13200
6000 | Use Model
Use Model | | 21
21
21 | WINDSOR CL | CR 70 | 0.50 | 1296
1271 | 15180 | 130 | 1350
1180 | 0.63 | 1 | 2 | 12000 | 12000 | Use Model | | 21 | CR 70
CR 78 | CL SEVERANCE
CR 80 | 0.11
1.00 | 92 | 14390
260 | 102
21 | 60 | 0.60
0.02 | 1 | 2 | 12000
6000 | 12000
6000 | Use Model
Use Count | | 21
21 | CR 72
CL | CL SEVERAN
CL | 0.49
0.12 | 0 | 6590
24710 | 0 | 720
2230 | 0.27
1.03 | 1 1 | 2 | 12000
12000 | 12000
12000 | Use Model
Use Model | | 21
21 | CR 76.5
SH 14 | CR 78
CR 84 | 0.48
0.99 | 157
59 | 450
170 | 28
3 | 80
10 | 0.04
0.01 | 1 1 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 21
21
21 | CR 102
SRFCH | CR 110
CR 96 | 3.98
0.58 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 21
21
21 | CR 94
CR 100 | SRFCH
CR 102 | 0.58
0.42
0.99 | 0 | 0 | 0 | 0 | 0.00
0.00
0.00 | 1 8 | 2 | 6000 | 6000 | No Model No Count | | 21 | CR 110 | CR 118 | 4.01 | 0 | 0 | 0 | Ö | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 22
22 | CR 19
CR 15 | CR 23
SRFCH | 1.98
0.48 | 92
0 | 7290 | 28
0 | 40
480 | 0.01
0.28 | 6 | 2 | 6000
13200 | 6000
13200 | Use Count
Use Model | | 22
22 | STR
SRFCH | CR 19
URBDRY | 0.82
0.49 | 164
140 | 2610
2640 | 46
32 | 140
140 | 0.22
0.22 | 6 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 22
22 | URBDRY
CR 31 | STR
CR 37 | 0.23
3.01 | 0
1895 | 2610
3730 | 0
834 | 140
1640 | 0.22
0.13 | 6
7 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Count | | 22 | RRX | CR 31 | 2.00 | 2123 | 6980 | 849 | 810 | 0.24 | 7 7 | 2 | 14400 | 14400 | Use Model | | 22
22 | SH 85
CR 41 | RRX
STR | 0.03
1.50 | 1579 | 3110 | 0
742 | 0
1460 | 0.00
0.11 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 22
22 | CR 39
CR 37 | CR 41
CR 39 | 1.00
0.99 | 1777
1826 | 3500
3590 | 835
840 | 1640
1650 | 0.12
0.12 | 7
7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 22
22 | STR
WIDCH | WIDCH
CR 49 | 2.37
0.12 | 0 | 290
0 | 0 | 20
0 | 0.01
0.00 | 7 7 | 2 2 | 14400
14400 | 14400
14400 | Use Model
Removed | | 22
22 | CR 51
CR 73 | GATE
SRFCH | 0.20
1.01 | 29
0 | 40
1050 | 9 | 10
130 | 0.00
0.09 | 7 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Model | | 22 | CR 93
CR 14.5 | CR 95
CR 18 | 0.99
1.31 | 0
670 | 0 | 0
221 | 0
220 | 0.00
0.11 | 8 6 | 2 | 6000
14400 | 6000
14400 | No Model No Count | | | | CK TQ | 1.51 | 670 | 3200 | 221 | 220 | 0.11 | 0 | 4 | 144UÜ | 14400 | Use Model | | 23 | STR | STR | 0.20 | 0 | 920 | 0 | 60 | 0.03 | 6 | 2 14400 | 14400 | Use Model | |----------------|---------------------------|-------------------------|----------------------|-------------------|----------------|------------|------------------|----------------------|--------|----------------------------|------------------------|---| | 23
23 | 168TH AV
CR 2.75 | CR 2.75
CR 4.4 | 0.75
0.88 | 284
78 | 600
170 | 139
8 | 290
20 | 0.05
0.01 | 6 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 23
23 | CR 4.4
CR 6 | CR 6
STR | 0.50
0.71 | 55
736 | 120 | 8
221 | 20
60 | 0.01
0.03 | 6 | 2 6000
2 14400 | 6000
14400 | Use
Count
Use Model | | 23
23 | STR
STR | STR
SH 52 | 0.11
2.48 | 0 | 940 | 0
270 | 60
60 | 0.03 | 6 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 23
23
23 | SH 52
CR 32.5 | CR 14.5
CR 36 | 1.02
1.51 | 843
679
171 | 1600
260 | 224
62 | 140
130 | 0.04
0.06
0.03 | 6 | 2 14400
2 6000 | 14400
14400
6000 | Use Model
Use Count | | 23 | CR 18 | CR 22.5 | 2.56 | 1560 | 2250 | 328 | 190 | 0.08 | 6 | 2 14400 | 14400 | Use Model | | 23
23 | CR 22.5
CR 24 | CR 24
CR 24.5 | 0.50
0.49 | 1099
549 | 2260 | 242
132 | 1000
540 | 0.16
0.08 | 6 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 23
23 | SH 66
BGN | CR 30.5
CR 28 | 0.23
0.53 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 23
23 | CR 44
CR 38 | CR 44.5
CR 40.5 | 0.50
1.35 | 0
23 | 0
60 | 0
4 | 0
10 | 0.00
0.01 | 5 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 23
23 | CR 48
CL | END
CR 48 | 0.32
0.08 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 23
23 | SH 60
CR 62.25 | CL
CL | 0.17
1.08 | 0 | 0
5570 | 0 | 0
440 | 0.00
0.21 | 3 | 2 6000
2 13200 | 6000
13200 | No Model No Count
Use Model | | 23
23 | SH 392
MAY DR | SYSCH
CL | 0.40
0.17 | 0 | 15550
11840 | 0 | 980
850 | 0.59
0.49 | 1 | 2 13200
2 12000 | 13200
12000 | Use Model
Use Model | | 23
23 | SYSCH
CR 2180 | CR 2180
SYSCH | 0.02
0.06 | 0 | 7110 | 0 | 0
1070 | 0.00 | 1 | 2 12000
2 12000 | 12000
12000 | No Model No Count No Model No Count Derived | | 23
23 | SYSCH
SYSCH | MAY DR
SYSCH | 0.09
0.07 | 0 | 0
15240 | 0 | 980 | 0.00
0.64 | 1 | 2 12000
2 12000 | 12000
12000 | No Model No Count No Model No Count Derived | | 23
23 | SH 14
STR | STR
CR 84 | 0.78
0.22 | 48
0 | 160
160 | 0 | 0 | 0.01
0.01 | 1 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count Derived | | 23
23 | CR 90
CR 100 | CR 96
CR 102 | 3.02
1.00 | 0 | 0 | 0 | 0 | 0.00 | 1 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 23
23 | CR 110 | CR 118
CR 120 | 4.01
1.03 | 36
0 | 60 | 6
0 | 10
0 | 0.01 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 24
24 | CR 19
CR 25.65 | CR 23
SH 85 | 1.98
0.09 | 1195
0 | 2250 | 275
0 | 520
0 | 0.06
0.00 | 6 | 2 19200
2 6000 | 19200
6000 | Use Count No Model No Count | | 24 | CR 39 | CR 41 | 0.99 | 35 | 50 | 10 | 10 | 0.00 | 7 | 2 6000 | 6000 | Use Count | | 24
25 | CR 41
STR | END
CR 54 | 0.49
0.88 | 0
193 | 6570 | 0
52 | 0
230 | 0.00
0.55 | 3 | 2 1800
2 6000 | 1800
6000 | No Model No Count
Use Model | | 25
25 | CR 34
SRFCH | CR 36
CL FORT LUPTON | 1.00
0.37 | 87
58 | 220
120 | 17
5 | 40
10 | 0.02
0.01 | 6 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 25
25 | CL FORT LUPTON
CR 20.2 | CR 20.2
SRFCH | 0.99
0.38 | 0
58 | 0
120 | 0
5 | 0
10 | 0.00
0.01 | 6 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 25
25 | CL FORT LUPTON
CR 32.5 | CR 22.50
CR 34 | 0.65
0.50 | 58
378 | 120
2000 | 5
129 | 10
680 | 0.01
0.08 | 6
5 | 2 6000
2 13200 | 6000
13200 | Use Count
Use Count | | 25
25 | CR 38
CR 36 | CR 40.5
CR 38 | 1.51
1.00 | 70
111 | 170
250 | 15
26 | 40
60 | 0.01
0.02 | 5
5 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 25
25 | CR 46
CL | SH 60
CR 52 | 0.75
1.72 | 0 | 0 | 0 | 0 | 0.00 | 5 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 25
25 | WCR 52
SH 392 | STR
CR 74 | 0.11
3.04 | 0
90 | 6570
260 | 0
17 | 230
50 | 0.55
0.02 | 3 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 25
25 | CR 58
US 34 | CL GREELEY
CR 58 | 0.26
0.01 | 361 | 14020
28920 | 47
0 | 1310
2940 | 0.49
1.00 | 3 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 25
25 | CR 84
SH 14 | CR 86
CR 84 | 1.01
1.00 | 122
582 | 360
2170 | 27
262 | 80
980 | 0.03
0.08 | 1 1 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 25
25 | CR 86
STR | STR
CR 88 | 0.97 | 50
0 | 150
150 | 4 | 10
10 | 0.01
0.01 | 1 | 2 6000
2 6000 | 6000
6000 | Use Count No Model No Count Derived | | 25
25 | CR 104
CR 90 | CR 108
CR 92 | 2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count | | 25 | CR 102 | CR 104 | 1.00 | 16
9 | 30 | 2 | 0 | 0.00 | 8 8 | 2 6000 | 6000 | No Model No Count Use Count | | 25
26 | CR 108
CR 3.5 | CR 110
RRX | 1.00
0.46 | 845 | 5760 | 42 | 220 | 0.00
0.20 | 6 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Model | | 26
26 | CL LONGMONT
RRX | CR 3.5
CL | 0.31
0.01 | 0 | 5100
5760 | 0 | 190
220 | 0.18
0.20 | 6 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 26
26 | CL
CR 11.2 | CR 7
SRFCH | 0.02
0.25 | 675
0 | 3820
2610 | 54
0 | 250
120 | 0.14
0.22 | 6
6 | 2 13200
2 6000 | 13200
6000 | Use Model
Use Model | | 26
26 | CR 13
SRFCH | CL FIRESTONE
CR 13 | 0.24
0.50 | 205
0 | 1230
2610 | 0 | 90
120 | 0.04
0.10 | 6
6 | 2 14400
2 13200 | 14400
13200 | Use Model
Use Model | | 26
26 | CR 19
SRFCH | CR 21.5
CR 31 | 1.48
2.21 | 235
270 | 450
390 | 52
146 | 100
210 | 0.04 | 6
7 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 26
26 | CR 25.25
STR | SH 85
SRFCH | 0.43 | 0
122 | 0
250 | 0
34 | 0
70 | 0.00
0.01 | 7 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Count | | 26
26 | RRX
SH 85 | STR
RRX | 0.05
0.02 | 122
122 | 250
310 | 34
34 | 70
90 | 0.01
0.01 | 7 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 26
26 | CR 31
CR 41 | END
CR 43 | 1.00
1.00 | 25
136 | 40
210 | 0 | 0 | 0.00 | 7 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 27
27 | STR
CR 52 | CR 54
STR | 0.78
0.23 | 61
0 | 5180
5180 | 13
0 | 280
280 | 0.43
0.43 | 3 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 27
27 | CR 88
SH 392 | CR 90
CR 74 | 1.01
2.97 | 0
661 | 0
2350 | 0
89 | 0
320 | 0.00
0.09 | 1 | 2 6000
2 13200 | 6000
13200 | No Model No Count
Use Count | | 27
27 | CR 64
CR 78 | CR 25.75
CR 80 | 0.66
1.01 | 5635
56 | 13520
190 | 902 | 850
0 | 0.38
0.02 | 3 | 2 18000
2 6000 | 18000
6000 | Use Model
Use Count | | 27
27 | RRX
CR 74 | STR
RRX | 0.78
0.50 | 52
138 | 150
150 | 6
30 | 20
90 | 0.01 | 1 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 27
27
27 | STR
SH 14 | END
CR 84 | 0.23
0.99 | 0
14 | 150 | 0 | 20
10 | 0.03
0.01
0.00 | 1 | 2 6000
2 6000 | 6000
6000 | No Model No Count Derived
Use Count | | 27 | CR 104 | CR 110 | 2.82 | 57 | 90 | 18 | 30 | 0.01 | 8 | 2 6000 | 6000 | Use Count | | 27
27 | CR 90
CR 102 | CR 100
CR 104 | 4.85
1.00 | 39
0 | 0 | 10
0 | 0 | 0.01
0.00 | 8 | 2 6000
2 6000 | 6000
6000 | Use Model
No Model No Count | | 27
27 | CL
CR 110 | CR 102
CR 120 | 0.50
5.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 27
27 | CR 110
RRX | RRX
CR 110 | 0.02
0.33 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 27
28 | CR 21 | CR 21.50 | 0.51
0.53 | 0
664 | 5260 | 0
193 | 0
310 | 0.00
0.18 | 6 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Model | | 28
28 | CR 7
CR 1 | CL
CL LONGMONT | 0.84
0.18 | 0 | 3250
0 | 0 | 150
0 | 0.12 | 6 | 2 13200
2 6000 | 13200
6000 | Use Model
No Model No Count | | 28
28 | CR 3
RRX | CL LONGMONT
CR 7 | 0.55
0.90 | 233
162 | 310
1490 | 28
49 | 40
70 | 0.03
0.12 | 6 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Model | | 28
28 | CR 5
CR 11 | RRX
CR 13 | 0.11
1.00 | 0
329 | 1490
6450 | 0
89 | 70
320 | 0.12
0.22 | 6 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Model | | 28
28 | CR 9.5
CR 15.7 | CR 11
CR 19 | 0.50
1.24 | 0
70 | 6450
150 | 0
10 | 320
20 | 0.22
0.01 | 6 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 28
28 | CR 19
RRX | CR 21
CR 31 | 1.04 | 280
224 | 3920
310 | 95
63 | 220
90 | 0.33
0.03 | 6
7 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 28
28 | STR
CR 21.5 | SH 85
STR | 0.53
1.47 | 0
913 | 6610
6610 | 0
283 | 400
400 | 0.23
0.23 | 6 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 28
28
28 | SH 85
CR 31 | RRX
GATE | 0.02 | 0
100 | 40
140 | 0
34 | 0 | 0.00 | 6 7 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 28
28
28 | CR 41
CR 39 | CR 43
CR 41 | 1.01
0.98 | 429
1551 | 870
3120 | 223
620 | 450
1250 | 0.01
0.03
0.11 | 7 7 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 29 | 168TH AV | CR 2.5 | 0.50 | 125 | 5240 | 13 | 350 | 0.44 | 7 7 | 2 6000 | 6000 | Use Model | | 29
29 | CR 10
BGN | CL
CR 10 | 0.29
0.32 | 0 | 2260
2260 | 0 | 110
110 | 0.19
0.19 | 7 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 29
29 | SYSCH
CR 14.5 | CR 12
CR 16 | 0.50
0.50 | 49
189 | 100
380 | 8
28 | 20
60 | 0.00
0.03 | 7 7 | 2 14400
2
6000 | 14400
6000 | Use Count
Use Count | | 29
29 | CR 34
CR 32 | STR
CR 34 | 0.57
1.00 | 125
137 | 140
160 | 33
59 | 40
70 | 0.01
0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 29
29 | SH 85
SH 256 | CR 40
CR 46 | 0.50
1.00 | 98
43 | 270
120 | 0
6 | 0
20 | 0.02
0.01 | 5
5 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 29
29 | STR
CR 38 | CR 38
RRX | 1.42
0.49 | 130
118 | 150
140 | 31
25 | 40
30 | 0.01
0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 29
29 | RRX
CL GILCREST | SH 85
SRFCH | 0.02
0.26 | 118
154 | 140
390 | 25
43 | 30
110 | 0.01
0.03 | 4
5 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 29
29 | 4TH ST
CR 40 | SPLIT
4TH ST | 0.06
0.29 | 0 | 390
390 | 0 | 110
110 | 0.03
0.03 | 5 | 2 6000
2 6000 | 6000
6000 | No Model No Count Derived
No Model No Count Derived | | 29
29
29 | SPLIT
SRFCH | CL GILCREST
SH 256 | 0.29
0.36
0.98 | 0 | 390
290 | 0
30 | 110
110
80 | 0.03
0.02 | 5 | 2 6000
2 6000
2 6000 | 6000
6000 | No Model No Count Derived No Model No Count Derived Use Count | | 29 | SRFCH | CR 42 | 0.98 | 154 | 1170 | 43 | 330 | 0.02 | 5 | 2 14400 | 14400 | Use Count | | Fig. Ca. 100 | odel odel odel odel odel odel unt | |--|---| | 23 | odel odel unt | | \$2.0 STR | odel unt | | 2-22 BBY | unt
unt
unt
ount Derived
unt | | 29 STR | ount Derived
unt | | 272 STR | | | 12 | | | 10 SRR | lo Count | | 30 | lo Count | | 30 WIDCH WIDCH O | lo Count | | 30 | | | 31 | odel | | 31 CR 141 CR 16 | odel | | 31 | odel | | 31 CR.18 CR.20 CATE 0.79 1444 105 105 20 100 0.07 7 2 2 14400 14400 14500 1550 1550 1550 1550 1 | odel | | 31 | odel | | 31 | odel | | 31 | odel | | 311 STR CR 38 STR O.37 O.10 6490 25 450 O.54 4 2 6000 6000 Use M | odel
odel | | 31 STR STR 0.10 101 6690 25 450 0.54 4 2 6000 6000 Use Medial 31 RRX STR 52 0.03 0 0 0 0 0 0 0 0 4 2 6000 6000 NoMedial 31 CR 101 101 101 101 101 101 101 101 101 10 | odel
odel | | 33 | lo Count | | 31 STR CR74 2.38 4996 31560 749 2630 0.44 1 2 13200 13200 Use M 31 BGRIFY CR 54 0.51 0 0 0 0 0 0.000 3 2 3000 3000 3000 No Model 1 31 CR 64 0.51 0.50 6538 2340 2351 2350 0.47 3 2 10200 14200 Use M 31 STR 54 14 3.42 2691 3490 2351 2350 0.47 3 2 10200 14200 Use M 31 STR 54 14 3.42 2691 3490 2351 2350 0.47 3 2 10200 14200 Use M 31 STR 54 14 3.42 2691 3490 2351 2350 0.47 3 2 10200 14200 Use M 31 STR 54 14 3.42 2691 3490 2351 2350 0.47 3 2 10200 14400 Use M 31 CR 74 RBX 0.49 2705 2610 514 1830 0.33 1 2 14400 14400 Use CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 14400 14400 Use CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 14400 14400 Use CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 14400 14400 Use CR 13 STR 0.13 CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 14000 14000 Use CR 13 STR 0.13 CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 6000 6500 Use CR 13 STR 0.13 CR 13 STR 0.13 2681 9530 563 2000 0.33 1 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 27 30 6 10 0.00 8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 27 30 6 10 0.00 8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 27 30 6 10 0.00 8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 27 30 6 10 0.00 8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 27 30 6 10 0.00 8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 0.51 55 100 13 20 0.00 0.8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 0.51 55 100 13 20 0.00 0.8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 0.51 55 100 13 20 0.00 0.8 2 6000 6500 Use CR 13 STR 0.60 CR 108 1.00 0.51 55 100 13 20 0.00 0.8 2 6000 6500 Use CR 13 STR 0.60 CR 108 STR 0.60 | odel | | 31 CLGREELEY CR66 0.50 6538 18140 915 1530 0.47 3 2 19200 19200 Use M 31 SH 992 STR 0.58 4883 21940 732 2380 0.76 1 2 14400 14400 Use M 31 CL SH 392 0.50 7208 18310 1081 1520 0.24 3 4 38400 38400 Use M 131 STR SH 144 3.42 2681 9529 563 2000 0.33 1 2 14400 14400 Use CL SH 31 STR SH 144 3.42 2681 9529 563 2000 0.33 1 2 14400 14400 Use CL SH 31 STR SH 144 3.42 2681 9529 563 2000 0.33 1 2 14400 14400 Use CL SH 31 STR SH 144 3.42 2681 9529 563 2000 0.33 1 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 5144 1830 0.33 1 2 2 14400 14400 Use CL SH 31 STR SH 144 STR 0.12 278 9610 0.00 8 2 2 6000 6000 Use CL SH 31 CR 105 CR 105 100 0.00 8 2 2 6000 6000 Use CL SH 31 CR 105 | odel | | 31 | odel | | 31 | odel | | 31 | unt | | 31 | unt | | 31 SPUT CR 100 0.51 55 100 13 20 0.01 2 2 6000 6000 Use CC 31 CR 104 CR 106 1.00 22 30 6 10 0.00 8 2 6000 6000 Use CC 31 CR 104 CR 105 1.09 0 0 0 0 0 0.00 8 2 6000 6000 No Model 131 SPUT SPUT SPUT SPUT SPUT SPUT SPUT SPUT | lo Count | | 31 | unt | | 32 STR SH 25 1,26 0 5530 0 250 0.19 5 2 14400 14400 Use M 32 CR3 CL 0.50 168 360 32 70 0.03 5 2 6000 6000 Use CC 32 RRX (MEAD CL) STR 0.21 0 5350 0 250 0.19 5 2 14400 14400 Use M 32 CR13 CR 13 CR 17 1.92 109 5880 0 340 0.49 5 2 6000 6000 Use M 32 STR SH 25 STR CL MEAD 1.48 0 6210 0 420 0.24 5 2 13200 13200 Use M 32 CL MEAD CR 13 0.54 869 5120 0 420 0.24 5 2 13200 13200 Use M 32 CR 18 CR 18 CR 18 10 0 0.20 5 2 13200 13200 Use M 32 CR 18 CR 18 CR 18 10 0 0 0.00 4 2 6000 6000 Use M 32 CR 18 CR 18 CR 18 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | lo Count | | 32 RRX (MEAD CL) STR 0.21 0 5850 0 250 0.19 5 2 14400 14400 Use M 32 CR 13 1.92 109 5880 0 340 0.49 5 2 6000 6000 Use M 32 SF 25 STR CL MEAD 1.48 0 6210 0 420 0.24 5 2 13200 13200 Use M 32 CL MEAD CR 13 0.54 869 5170 191 290 0.20 5 2 13200 13200 Use M 32 SF CH END 1.51 75 90 25 30 0.01 4 2 6000 6000 Use CR 32 CR 35 CR 37 1.01 0 80 0 10 0.00 4 2 14400 14400 Use M 32 CR 35 CR 31 1.01 0 80 0 10 0.00 4 2 14400 14400 Use M 32 CR 35 CR 31 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 35 CR 35 CR 37 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 35 CR 37 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 35 CR 37 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use CR 32 33 CR 35 | odel | | 32 SH 25 STR CL MEAD 1.48 0 6210 0 420 0.24 5 2 13200 13200 Use M 32 CL MEAD CR 13 0.54 869 5170 191 290 0.20 5 2 13200 13200 Use M 32 SRFCH END 1.51 75 90 25 30 0.01 4 2 6000 6000 Use M 32 CR 35 CR 37 1.01 0 80 0 10 0.00 4 2 14400 14400 Use M 32 CR 35 CR 37 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 35 CR 31 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 31 CR 33 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use M 32 CR 31 CR 31 CR 33 1.01 1489 3070 610 1260 0.11 4 2 14400 14400 Use CR 32 33 CR 35 3 | odel | | 32 CR 35 CR 37 1.01 0 80 0 10 0.00 4 2 14400 14400 Use M 32 CL (R 529 1.00 0 1110 0 60 0.04 4 2 14400 14400 Use M 1400 Us | | | 32 | unt
odel | | 32 | unt | | 32 CR39 CR43 1.98 668 1310 294 580 0.05 4 2 14400 14400 Use CR CR37 CR39 1.00 1274 5620 522 1080 0.09 4 2 14400 14400 Use CR CR CR37 CR39 1.00 1274 5620 522 1080 0.09 4 2 14400 14400 Use CR CR CR37 CR | unt | | 32 | unt | | 33 BARLEY AV CR 18 1.00 0 0 0 0.00 7 2 1800 1800 No Model I 33 SRFCH CR 8 0.50 0 210 0 10 0.01 7 2 14400 14400 Use M 33 CR 6 SRFCH 0.49 0 210 0 10 0.01 7 2 14400 14400 Use M 33 CR 34 CR 38 1.99 101 120 30 30 0.01 4 2 6000 6000 Use C 33 SRFCH CR 34 0.97 137 160 48 60 0.01 4 2 6000 6000 Use C | odel | | 33 CR 6 SRCH 0.49 0 210 0 10 0.01 7 2 14400 14400 Use M
33 CR 34 CR 38 1.99 101 120 30 30 0.01 4 2 6000 6000 Use CC
33 SRCH CR 34 0.97 137 160 48 60 0.01 4 2 6000 6000 Use CC | lo Count | | 33 SRFCH CR34 0.97 137 160 48 60 0.01 4 2 6000 6000 Use Co | odel | | 33 CR 32 SRFCH 0.02 137 310 48 110 0.01 4 2 14400
14400 Use Co | unt | | 33 SH 256 CR 46 1.00 123 290 27 60 0.02 5 2 6000 6000 Use CC 33 STR SRFCH 2.10 283 320 65 70 0.03 4 2 6000 6000 Use CC 33 STR SRFCH 2.10 283 320 65 70 0.03 4 2 6000 6000 Use CC 33 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 34 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 5 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 5 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 5 6000 6000 Use CC 35 STR 0.39 143 170 33 40 0.01 4 2 5 6000 6000 Use CC 35 STR 0.39 143 170 5 14 | unt | | 33 CR38 STR 0.39 143 170 33 40 0.01 4 2 6000 6000 Use CC 33 STR STR 0.14 143 170 33 40 0.01 4 2 6000 6000 Use CC 33 SRCH RRX 0.15 0 320 0 70 0.01 4 2 14400 No Model No C | unt | | 33 SH25 SH256 0.14 224 250 54 60 0.02 4 2 14400 14400 No Model No C 33 RRX US 85 0.05 0 320 0 70 0.01 4 2 14400 14400 No Model No C | unt | | 33 STR CR74 2.98 2131 7040 362 1200 0.27 1 2 13200 13200 Use Cc
33 CR52.5 CR54 0.22 706 1280 49 90 0.21 3 2 3000 3000 Use Cc | unt | | 33 SH 392 STR 0.02 0 7050 0 350 0.24 8 2 14400 14400 Use M
33 STR SH 14 1.71 3511 12470 632 2250 0.43 1 2 14400 14400 Use CC | odel
unt | | 33 RRX STR 1.82 3511 12470 632 2250 0.43 1 2 14400 14400 Use Co
33 CR74 RRX 0.50 3560 12650 676 2400 0.44 1 2 14400 14400 Use Co | unt | | 33 STR CR 88 0.96 2707 9180 406 1380 0.32 1 2 14400 14400 Use Ct 33 CL CR 86 0.54 2683 9100 349 1180 0.32 1 2 14400 14400 Use Ct 33 CR 86 STR 0.03 270 9180 406 1380 0.32 1 2 14400 14400 Use Ct 34 CR 86 STR 0.03 270 9180 406 1380 0.32 1 2 14400 14400 Use Ct 34 CR 86 STR 0.03 270 9180 406 1380 0.32 1 2 14400 14400 Use Ct 34 CR 86 STR 0.03 270 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 406 1380 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 0.32 1 2 14400 14400 Use Ct 35 CR 970 9180 0.32 1 2 14400 14400 Us | unt | | 33 CR 86 STR 0.03 2707 9180 406 1380 0.32 1 2 14400 14400 Use Ct 33 SPUT CL 0.13 1819 2550 182 260 0.09 2 2 14400 14400 Use Ct 33 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 14400 14400 Use Ct 34 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 14400 14400 Use Ct 35 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 2550 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 250 0.09 182 260 0.09 2 2 2 14400 14400 Use Ct 36 CR 88 SPUT 0.13 1819 250 0.09 182 260 | unt | | 35 CR06 3FUI 0.13 1613 2330 162 260 0.09 2 2 14400 14400 Use CC
33 CR 100 CR 108 4.02 37 60 6 10 0.01 8 2 6000 6000 Use CC
33 CR98 CR 100 1.00 24 40 2 0 0.00 2 2 6000 6000 Use CC | unt | | 33 CR90 CR98 3.86 49 90 7 10 0.01 2 2 6000 6000 Use C
34 CR1 CR3 0.99 1594 5870 175 310 0.20 5 2 14400 14400 Use M | unt
odel | | 34 CL CL 0.27 0 8530 0 1020 0.30 5 2 14400 14400 No Model No C 34 CR 3 CL 0.25 1707 8530 205 1020 0.30 5 2 14400 14400 No Model No C 34 CR 3 CL 0.25 1707 8530 205 1020 0.30 5 2 14400 14400 No Model No C 34 CR 3 | ount Derived
unt | | 34 CL CL/MEAD 0.11 0 5200 0 280 0.18 5 2 14400 14400 Use M
34 CR1 CR3 0.00 1594 5200 175 280 0.18 5 2 14400 14400 Use M | odel | | 34 CR15 CR17 0.98 1444 7660 289 1530 0.27 5 2 14400 14400 Use CC 34 CL CR13 1.51 1920 2850 250 140 0.11 5 2 13200 13200 Use M CC 34 CR13 CR15 0.98 1555 15180 280 270 0.18 5 2 14400 14400 Use M CC 34 CR15 0.98 15180 280 280 270 0.18 5 2 14400 14400 Use M CC 34 CR15 0.98 15180 280 280 280 280 280 280 280 280 280 2 | odel | | 34 CR13 CR15 0.98 1555 5180 280 270 0.18 5 2 14400 14400 Use M
34 CR17 RRX 0.78 1183 5630 296 410 0.20 5 2 14400 14400 Use M
34 CR19.5 CR21 0.49 1314 3000 355 160 0.10 5 2 14400 14400 Use M | odel | | 34 CR19.5 CR21 0.49 1314 3000 355 160 0.10 5 2 14400 14400 Use M
34 CR19 CR19.5 0.50 1277 4410 306 330 0.15 5 2 14400 14400 Use M
34 RRX CR19 0.20 1183 5630 296 410 0.20 5 2 14400 14400 Use M | odel | | 34 MNA CL13 0.20 1163 3530 275 110 0.20 5 2 14400 14400 Use M
34 WIDCH CR51 0.87 1216 2880 742 1450 0.08 4 2 14400 14400 Use M
34 CL PLATTEVILLE CR29 1.30 97 110 31 40 0.01 4 2 6000 6000 Use Cc | | | 34 CR25 CR2525 0.25 0 0 0 0 0.000 5 2 13200 13200 No Model 34 CR31 CR31 CR33 1.01 27 30 6 10 0.00 4 2 6000 6000 Wasel | unt | | 34 CR33 CR35 1.01 84 100 23 30 0.01 4 2 6000 6000 Use CC 34 SPECH WIDCH 0.07 1216 2380 742 1450 0.08 4 2 14400 14400 Use CC 1 | unt
unt
Io Count | | 34 CR 49 SRFCH 0.03 0 5490 0 320 0.19 4 2 14400 14400 Use M 34 CR 51 CR 53 0.99 1157 2260 659 1290 0.08 4 2 14400 14400 Use Co | unt
unt
lo Count
unt
unt
unt | | 24 | CD 01 | CATE | 0.01 | 0 | 0 | 0 | 0 | 0.00 | 0 | | 1900 | 1800 | No Model No Count | |----------------|---------------------------|-----------------------|----------------------|----------------|-----------------|----------------|---------------|----------------------
-------------|--------|-------------------------|------------------------|--| | 34
35 | CR 91
CR 12 | GATE
SH 52 | 0.81
0.50 | 1023 | 2300 | 0
460 | 1040 | 0.00 | 8
7 | 2 | 1800
14400 | 1800
14400 | No Model No Count
Use Count | | 35
35 | CR 1050
CR 34 | CR 12
CR 36 | 0.50
0.99 | 914
73 | 1220
80 | 402
24 | 540
30 | 0.20
0.01 | 7 | 2 | 3000
6000 | 3000
6000 | Use Count
Use Count | | 35
35 | SRFCH
CR 32 | CR 34
SRFCH | 0.99
0.01 | 138
138 | 160
320 | 57
57 | 70
130 | 0.01 | 4 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 35
35 | CR 42
STR | CR 44
CR 40 | 1.00
0.54 | 540
221 | 1080
260 | 162
82 | 330
100 | 0.04 | 4 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 35
35 | CR 36
CR 38 | CR 38
STR | 1.00
0.46 | 143
221 | 170
260 | 54
82 | 60
100 | 0.01
0.02 | 4 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 35
35 | CR 40
CR 48 | CR 42
RRX | 1.00
0.38 | 244
471 | 280
1770 | 98
198 | 110
740 | 0.02
0.06 | 4 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 35
35 | SH 85
CR 44 | CR 48
CR 46 | 1.02
0.97 | 626 | 3130
1120 | 225
129 | 1120
260 | 0.11
0.04 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 35
35 | CR 46
RRX | RRX
SH 85 | 0.01
0.02 | 0 | 0 | 0 | 0 | 0.00
0.00 | 4 | 2 | 14400
14400 | 14400
14400 | No Model No Count
No Model No Count | | 35
35 | STR
RRX | CR 394
STR | 0.53
0.10 | 471
471 | 1770 | 198
198 | 740
740 | 0.06
0.06 | 3 | 2 | 14400
14400
14400 | 14400 | Use Count | | 35 | STR | CR 90 | 1.60 | 39 | 70 | 111 | 20 | 0.01 | 2 | 2 | 6000 | 14400
6000 | Use Count
Use Count | | 35
35 | CR 70
CR 66 | CR 72
STR | 1.01
0.98 | 2769
2519 | 9840
8770 | 252 | 980
400 | 0.34
0.11 | 3 | 4 | 14400
38400 | 14400
38400 | Use Count
Use Model | | 35
35 | STR
RRX | CR 64
STR | 0.27
0.60 | 7728
0 | 20100
20760 | 850
0 | 1440
1480 | 0.26
0.27 | 3 | 4
4 | 38400
38400 | 38400
38400 | Use Model
Use Model | | 35
35 | CR 64
CR 66 | CR 66
CR 66 | 0.54
0.48 | 4351
0 | 17650
15960 | 479
0 | 1130
1080 | 0.23
0.21 | 3 | 4 | 38400
38400 | 38400
38400 | Use Model
Use Model | | 35
35 | SH 392
STR | CR 70
SH 392 | 1.00
0.11 | 2965
0 | 10530
8550 | 356
0 | 1260
390 | 0.37
0.11 | 1
8 | 2
4 | 14400
38400 | 14400
38400 | Use Count
Use Model | | 35
35 | CR 78
CL EATON | STR
CR 76 | 0.91
0.50 | 1709
0 | 6070
1560 | 137
0 | 490
80 | 0.21
0.05 | 1 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count Derived | | 35
35 | CR 72
CL EATON | CL EATON
CL EATON | 0.36
0.09 | 2156
2156 | 8030
8030 | 237
237 | 880
880 | 0.30
0.30 | 1 | 2 | 13200
13200 | 13200
13200 | Use Count
Use Count | | 35
35 | CR 74
RRX | RRX
CL EATON | 0.49
0.01 | 0 | 1590
1560 | 0 | 80
80 | 0.06
0.05 | 1 | 2 | 14400
14400 | 14400
14400 | Use Model
No Model No Count Derived | | 35
35 | CR 76
CR 84 | CR 78
STR | 1.01 | 1767
32 | 6280
60 | 141
9 | 500
20 | 0.22 | 1 2 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 35
35 | CL AULT
CR 80 | CL AULT
CL AULT | 0.14
0.33 | 1749
1749 | 2450 | 122
122 | 170
170 | 0.09
0.09 | 2 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 35 | STR | CR 80 | 0.10 | 0 | 6070 | 0 | 490 | 0.21 | 2 | 2 | 14400 | 14400 | No Model No Count Derived | | 35
35 | CL AULT
CR 90 | CL AULT
CR 96 | 0.02
2.87 | 1749
34 | 60 | 6 | 170
10 | 0.09
0.01 | 2 | 2 | 14400
6000 | 14400
6000 | Use Count Use Count | | 35
35 | CR 96
CR 42 | CR 98
CR 44 | 0.93
0.02 | 17
24 | 30
30 | 3 | 10
0 | 0.00 | 2 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 36
36 | CR 1
CR 5 | CR 5
CR 7 | 2.07
0.84 | 62
117 | 290 | 7
16 | 20
40 | 0.01
0.02 | 5
5 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 36
36 | CR 5
CL MEAD | CL MEAD
CR 5 | 0.21
0.04 | 245
245 | 1300
1300 | 47
47 | 250
250 | 0.05
0.05 | 5 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 36
36 | CR 15
RRX | CR 17
SRFCH | 0.97
1.11 | 40
0 | 100
260 | 4
0 | 10
30 | 0.01
0.02 | 5
5 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count Derived | | 36
36 | CL - MEAD
SPLIT - MEAD | RRX
CL - MEAD | 0.78
0.05 | 103
0 | 260
260 | 13
0 | 30
30 | 0.02
0.01 | 5
5 | 2 | 6000
14400 | 6000
14400 | Use Count
No Model No Count Derived | | 36
36 | SH 25
SRFCH | SPLIT - MEAD
CR 15 | 0.05
0.96 | 0
46 | 260
110 | 0
4 | 30
10 | 0.01
0.01 | 5
5 | 2 | 14400
6000 | 14400
6000 | No Model No Count Derived Use Count | | 36
36 | CR 13
SRFCH | SRFCH
CR 13 | 0.02 | 46
0 | 330
260 | 4
0 | 30
30 | 0.01 | 5
5 | 2 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count Derived | | 36
36 | SRFCH
RRX | SRFCH
CR 29 | 1.63
1.27 | 100
136 | 110
160 | 34
46 | 40
50 | 0.01
0.01 | 4 | 2 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 36
36 | CR 23
SH 85 | SH 85
RRX | 1.69
0.02 | 120
136 | 260
160 | 30
46 | 60
50 | 0.02
0.01 | 5
4 | 2 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 36
36 | CR 31
STR | CR 35
CR 31 | 2.02
0.17 | 66
80 | 80
90 | 19
21 | 20
20 | 0.01
0.01 | 4 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 36
36 | CR 29
STR | STR
STR | 0.67
0.16 | 80
80 | 90
90 | 21
21 | 20
20 | 0.01
0.01 | 4 | 2 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 36
36 | SRFCH
CR 49 | SRFCH
SRFCH | 0.02 | 100
100 | 200
200 | 34
34 | 70
70 | 0.01
0.01 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 36
37 | SRFCH
CR 122 | CR 55
N GRASSLAND | 1.27
2.02 | 76
0 | 90
0 | 30
0 | 40
0 | 0.01 | 4
8 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 37
37 | CR 14
CR 6 | CR 18
CR 8 | 2.01
1.00 | 713
2948 | 3020
5450 | 207
413 | 240
390 | 0.10
0.19 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 37
37 | CR 12
CR 10 | SH 52
CR 12 | 0.49
1.01 | 1660
1554 | 2690
2690 | 365
311 | 150
150 | 0.09 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 37
37 | CR 8
SH 52 | CR 10
CR 14 | 1.00
0.49 | 2507
793 | 2690 | 426
230 | 150
320 | 0.09
0.14 | 7 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 37
37
37 | CR 20
CR 18 | CR 22
CR 20 | 1.02 | 497
505 | 980 | 184
172 | 360
340 | 0.03
0.03 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 37
37
37 | SRFCH
CR 22 | SYSCH
SRFCH | 0.49
0.49 | 148
148 | 350
210 | 44
44 | 100
60 | 0.01
0.02 | 7 7 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 37
37 | SYSCH
CR 32 | END
CR 34 | 0.51
1.00 | 148
0 | 350 | 44
0 | 100
0 | 0.01
0.00 | 7 | 2 | 14400
1800 | 14400
1800 | Use Count
No Model No Count | | 37
37
37 | CR 40
CR 46 | SRFCH
RRX | 2.01
1.06 | 58
157 | 70 | 15
53 | 20
60 | 0.01
0.02 | 4 4 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 37
37
37 | SRFCH
RRX | CR 44
SH 85 | 0.01 | 46
0 | 110 | 10
0 | 20 | 0.00 | 4 | 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 37
37
37 | STR
CR 70 | CR 92
CR 72 | 2.23
1.00 | 67
2083 | 120 | 35
104 | 60
200 | 0.00
0.01
0.12 | 2 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Model | | 37 | CR 66 | SH 392 | 1.00 | 2738 | 10280 | 301 | 1130 | 0.36 | 3 | 2 | 14400 | 14400 | Use Count Use Count | | 37
37 | CR 64
RRX | CR 66
CR 62.25 | 1.00
0.07 | 0 | 1040 | 226
0 | 850
60 | 0.36
0.04 | 3 | 2 | 13200
13200 | 13200
13200 | Use Model | | 37
37 | STR
SU 202 | CR 70 | 0.00 | 2014 | 7160 | 101 | 360
360 | 0.04
0.25 | 1 | 2 | 13200
14400 | 13200
14400 | Use Model Use Count | | 37
37 | SH 392
RRX | STR
STR | 0.12
1.81 | 0
523 | 730 | 0
65 | 750
90 | 0.30
0.03 | 2 | 2 | 14400
13200 | 14400
13200 | No Model No Count Derived Use Count | | 37
37 | 6TH AV
CR 72 | CL EATON | 0.09
0.50 | 2062 | 2980
2980 | 0
124 | 100
120 | 0.05
0.11 | 1 | 2 | 14400
13200 | 14400
13200 | No Model No Count Derived Use Model | | 37
37 | STR
7TH ST | CR 70
CL | 0.00
0.10 | 0 | 3480
1390 | 0 | 200
100 | 0.12
0.05 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
No Model No Count Derived | | 37
37 | WIDCH
SH 85 | 7TH ST
RRX | 0.08
0.02 | 0
545 | 1390
760 | 0
55 | 100
80 | 0.05
0.03 | 2 | 2 | 14400
13200 | 14400
13200 | No Model No Count Derived Use Count | | 37
37 | SRFCH
SH 14 | SRFCH
SRFCH | 0.53
0.97 | 395
692 | 970
970 | 55
111 | 80
160 | 0.02
0.03 | 2 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 37
37 | STR
CR 86 | SH 14
STR | 0.90
0.70 | 501
115 | 700
200 | 75
41 | 110
70 | 0.02
0.02 | 2 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 37
37 | SRFCH
CR 102 | CR 86
CR 108.05 | 0.50
3.07 | 395
12 | 550
20 | 55
6 | 80
10 | 0.02
0.00 | 2
8 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 37
37 | CR 98
CR 94 | CR 100
CR 98 | 1.00
1.91 |
0
13 | 0
20 | 0
5 | 0
10 | 0.00 | 2 2 | 2 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 37
37 | CR 100
SRFCH | CR 102
CR 122 | 1.00
5.92 | 0
19 | 0
30 | 0
1 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 37
37 | CR 108.05
N GRASSLAND | SRFCH
CR 128 | 1.02
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 2 | 14400
6000 | 14400
6000 | No Model No Count
No Model No Count | | 38
38 | CR 7
CR 3 | STR SH 25
CR 5 | 0.96
1.00 | 0
317 | 8250
740 | 0
174 | 630
410 | 0.31
0.06 | 5
5 | 2 | 13200
6000 | 13200
6000 | Use Model
Use Count | | 38
38 | CR 15
CL | CR 17
RRX | 0.97
0.77 | 1036
0 | 7530
11080 | 176
0 | 550
930 | 0.26
0.92 | 5 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Model | | 38
38 | CR 13
RRX | CR 15
CR 13 | 0.97
0.56 | 1052
0 | 7530
9440 | 168
0 | 550
790 | 0.26
0.79 | 5 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Model | | 38
38 | CR 17
RRX | CR 19
CR 19.5 | 1.18
0.06 | 1983
0 | 9330
710 | 218
0 | 1030
30 | 0.73
0.32
0.02 | 5 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | 38
38 | CR 19
SRFCH | RRX
END | 0.02
0.69 | 0 | 710
710
0 | 0 | 30
0 | 0.02
0.00 | 5
4 | 2 | 14400
14400
6000 | 14400
14400
6000 | Use Model
No Model No Count | | 38
38 | CR 35
RRX | CR 39
CR 29 | 2.00
0.42 | 112
84 | 130
100 | 39
15 | 50
20 | 0.00
0.01
0.01 | 4 4 | 2 | 6000
6000 | 6000
6000 | Use Count Use Count | | 38
38 | SH 60
SH 85 | SH 85
RRX | 0.54
0.02 | 64
84 | 150
100 | 15
15
15 | 40
20 | 0.01
0.01
0.01 | 5
4 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 38 | CR 29 | STR | 1.90 | 148 | 170 | 47 | 60 | 0.01 | 4 | 2 | 6000 | 6000 | Use Count | | 20 | UB 33 | FNID | ດ ວາ | 0 | | Λ. | | | Λ | , | EUUU | 6000 | No Model No Count | | 38
38
38 | CR 33
STR
STR | END
CR 33
CR 43 | 0.22
0.11
0.34 | 0
142
41 | 0
170
50 | 0
48
14 | 0
60
20 | 0.00
0.01
0.00 | 4
4
4 | 2 2 | 6000
6000 | 6000
6000 | No Model No Count Use Count Use Count | | 1 | 38 | SRFCH | CR 39 | 0.01 | 0 | 290 | 0 | 20 | 0.01 | 4 | 2 14400 | 14400 | Use Model | |--|----------|----------------|--------------------|--------------|-----------|------------------|----------|--------------|------|--------|--------------------|----------------|--| | 10 | 38 | CR 39 | SRFCH | 0.01 | | 290
170 | | 20 | 0.01 | | 2 14400 | 14400 | Use Model | | 1 | | SRFCH | SRFCH | 0.02 | | 5700
140 | 0 | 330 | 0.20 | 4 | 2 14400 | 14400 | Use Model | | 10 | 38 | SRFCH | SRFCH | 0.02 | 52 | 140
5700 | 19 | 50 | 0.00 | 4 | 2 14400 | 14400 | Use Count | | 1 | 39 | END | CR 18 | 1.00 | 65 | 90
130 | 15 | 20 | 0.01 | | 2 6000 | 6000 | Use Count | | 1 | 39 | CR 2 | CL | 0.83 | 507 | 2620 | 96 | 180 | 0.09 | | 2 14400 | 14400 | Use Model | | 1 | 39 | CR 18 | CR 20 | 1.01 | 18 | 30 | 3 | 0 | 0.00 | 7 7 | 2 6000 | 6000 | Use Count | | 1 | 39 | CR 28 | CR 32 | 1.99 | 1636 | 3300 | 736 | 1490 | 0.11 | | 2 14400 | 14400 | Use Count | | 1.5 | 39 | CR 38 | CR 40 | 1.00 | 1596 | 3290
3660 | 447 | 920 | 0.11 | 4 | 2 14400 | 14400 | Use Count | | 1 | 39 | CR 44 | CR 37.7 | 2.27 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 14400 | 14400 | No Model No Count | | 10 | 39 | CR 37.7 | URBDRY | 0.24 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 6000 | 6000 | No Model No Count | | 1.5 | 39 | STR | CR 90 | 1.52 | 146 | 0
260 | 51 | 90 | 0.02 | 2 | 2 6000 | 6000 | Use Count | | 10 | 39 | CR 66 | SH 392 | 1.01 | | 2650
1160 | 146 | 30 | 0.04 | 3 | 2 14400 | 14400 | Use Model | | 150 C. GAMEST GAT 1213 1016 1026 11 | | | | | 0
1150 | 650
1630 | | | | 2 | | | | | 1. | 39
39 | | COLLINS ST / CR 74 | 0.57 | 2539 | 3380
3610 | 508 | 720 | 0.14 | 2 | 2 13200 | 13200 | Use Count | | 1. | | | | | | 3010
1340 | | | | 2 | | | | | 1911 1914 1974 1975 | 39 | CL EATON | CL EATON | 0.53 | 0 | 1340
1340 | 0 | 80 | 0.05 | 2 | 2 14400 | 14400 | Use Model | | 3-9 | | | STR
SH 14 | | 138
0 | 240
830 | 34
0 | 60
40 | 0.02 | 2 | | 6000
14400 | Use Count | | 19 | | CR 98 | CR 100 | 1.00 | | 0
620 | | 0 | 0.00 | 2 | 2 6000 | 6000 | No Model No Count | | 38 | 39 | CR 90 | CR 92 | 0.97 | 497 | 710 | 129 | 180 | 0.02 | 2 | 2 14400 | 14400 | Use Count | | 40 | 39 | CR 96 | CR 98 | 0.93 | | 0 | 0 | 0 | 0.00 | 2 8 | 2 6000 | 6000 | No Model No Count | | 40 | 40 | CR 1 | CR 3 | 0.98 | | 330 | 22 | 50 | 0.03 | 5 | 2 6000 | 6000 | Use Count | | 42 1882 CF1.92 1-65 1-75 1-65 1-75 1-65 1-75
1-75 | 40 | CR 15 | CR 17 | 0.95 | 77 | 180 | 41 | 100 | 0.02 | 5 | 2 6000 | 6000 | Use Count | | 40 | 40 | RRX | CR 37 | 3.49 | 375 | 430
430 | 83 | 100 | 0.04 | 4 | 2 6000 | 6000 | Use Count | | 40 | 40 | CR 23 | SRFCH | 1.75 | 0 | 670
0 | 0 | 0 | 0.00 | 5 | 2 6000 | 6000 | No Model No Count | | 40 | 40 | SH 85 | RRX | 0.06 | | 0
430 | 0 | 100 | 0.04 | 5
4 | 2 6000 | 6000 | No Model No Count Derived | | 61 | | | | | 272
53 | <u>590</u>
60 | 76
15 | | | 5
4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 40 | | CR 39 | SRFCH | 0.10 | 70 | 80
160 | 21 | 50 | 0.01 | | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 40 | | | | | | 60
40 | | | | | | | | | 40 | | CR 43 | CR 45 | 1.00 | 59 | 70
40 | 15 | 20
10 | 0.01 | | 2 6000 | 6000 | Use Count | | 40 | | SRFCH
CR 49 | | 0.02 | | 250
250 | 44 | 100 | 0.01 | | | | Use Count | | 41 CR 16 CR 18 1.00 2053 918 780 1.1480 0.144 7 2 1.4400 | 40 | CR 55 | | 1.00 | | 100 | 46 | 50 | 0.01 | 4 | 2 6000 | 6000 | Use Count | | 41 | 41 | | | 1.00 | 2053 | 4150 | 780 | 1580 | 0.14 | 7 | 2 14400 | 14400 | Use Count | | 41 | 41 | CL | SPLIT | 0.10 | 0 | 190
110 | 0 | 50 | 0.02 | 7 7 | 2 6000 | 6000 | No Model No Count Derived | | 41 | 41 | CR 4 | STR | 0.50 | 79 | 560
100 | 16 | 110 | 0.05 | 7 | 2 6000 | 6000 | Use Count | | 41 CR 8 CR 10 103 695, 1400 2115 4300 0.05; 7 2 14400 14400 Use Count 4.1 CR 14 1 | 41 | CR 12 | SH 52 | 0.50 | 1309 | 2640
2630 | 550 | 1110 | 0.09 | 7 | 2 14400 | 14400 | Use Count | | 41 | 41 | CR 8 | CR 10 | 1.03 | 695 | 1680
1400 | 215 | 430 | 0.05 | 7 | 2 14400 | 14400 | Use Count | | ## CR 20 CR 27 1.00 12188 ## 2520 ## 855 1790 0.15 7 2 1.14400 14400 1450 Count ## 41 CR 126 CR 28 1.01 1.2115 ## 4710 ## 472 1.1420 1430 14400 1450 Count ## 41 CR 26 CR 28 0.99 1670 ## 4710 | 41 | SH 52 | CR 14 | 0.50 | 2307 | 4520
5790 | 854 | 830 | 0.20 | 7 | 2 14400 | 14400 | Use Model | | 41 | 41 | CR 20 | CR 22 | 1.00 | 2108 | 3630
4260 | 885 | 1790 | 0.15 | 7 | 2 14400 | 14400 | Use Count | | 41 CR46 CR52 101 8 10 1 0 0.00 4 2 6000 6000 Use Count 41 CR46 CR50 199 98 110 20 20 20 0.01 4 2 6000 6000 Use Count 41 CR44 CR44 CR46 0.00 1 0.00 1 0 0 0.00 4 2 6000 6000 Use Count 41 CR54 CR44 CR46 0.00 1 0.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | CR 20
CR 24 | | | 4270
3810 | | 1670
1680 | | 7
7 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 41 | | CR 40 | CR 28
CR 42 | | 1620
8 | 3270
10 | 713
1 | | | 7 | | | | | 41 CR.46 CR.46 O.01 SO 120 13 30 0.00 4 2 14400 14400 Use Count 4.1 CR.50 RBX 0.54 0.5 10 120 132 17 50 0.04 4 2 1500 500 500 Use Model 4.1 CR.50 RBX 0.54 0.5 10 120 132 17 50 0.04 4 2 2 500 500 500 Use Model 4.1 CR.50 RBX 0.54 0.5 10 120 132 13 10 0.01 2 2 2 600 500 Use Count 4.1 STR CR.74 2.93 336 50 108 190 0.05 2 2 600 500 Use Count 4.1 STR CR.74 2.93 336 50 108 190 0.05 2 2 2 600 500 Use Count 4.1 STR CR.74 2.93 336 50 0.05 108 190 0.05 2 2 2 600 500 Use Count 4.1 CR.50 CR.54 1.09 10 10 10 10 10 10 10 10 10 10 10 10 10 | | CR 46
CR 44 | CR 50 | | | 110
60 | | | | | 2 6000 | 6000 | Use Count | | 41 | | CR 44 | CR 46 | 0.01 | 50 | 120
480 | 13
17 | | | | 2 14400 | 14400 | Use Count | | 41 STR CR74 2.93 336 590 108 190 0.05 2 2 2 6000 6000 Use Count 141 CR62 CR64 1.09 851 4180 136 910 0.17 4 2 12000 12000 Use Model 41 STR CR64 0.25 959 7780 134 1500 0.32 4 2 12000 12000 Use Model 41 Use CR64 1.05 959 7780 134 1500 0.32 4 2 12000 12000 Use Model 41 Use CR64 1.05 959 7780 134 1500 0.32 4 2 12000 12000 Use Model 41 Use CR64 1.05 959 10 120 120 120 120 120 120 120 120 120 | | RRX | CR 52 | 0.47 | 135 | 480
120 | 22 | 60
20 | | 4 | 2 6000 | | Use Model | | 41 SYSCH CR 62 0.25 959 7750 134 1500 0.32 4 2 12000 12000 Use Model 1 US 85 SYSCH 0.19 0 7750 0 1500 0.32 4 2 12000 12000 Use Model 41 US 85 SYSCH 0.19 0 7750 0 1500 0.32 4 2 14400 14400 Use Count 1 1 US 81 SYS 0.02 711 1430 150 300 10.05 4 2 14400 14400 Use Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 41 | STR | CR 74 | 2.93 | 336 | 590
4180 | 108 | 190 | 0.05 | | 2 6000 | 6000 | Use Count | | 41 URBORY 511-392 0.92 713 1480 150 300 0.05 4 2 14400 14400 Use Count 41 CR 664 RRX 0.50 0 2340 150 360 0.09 4 2 13200 13200 Use Model 41 RRX CR 66 0.51 770 2530 139 370 0.10 4 2 13200 13200 Use Model 41 SH 392 STR 0.19 0 590 0 190 0.05 2 2 6500 6500 No Model No Count Port 1 CR 74 SH 14 4.00 118 139 370 0.10 4 2 13200 13200 Use Model No Count Port 1 CR 74 SH 14 4.00 118 139 30 50 0.00 2 2 2 6500 6500 No Model No Count Port 1 CR 74 SH 14 4.00 188 130 30 50 0.00 2 2 2 6500 6500 No Model No Count Port 1 CR 74 SH 14 4.00 188 130 30 50 0.00 2 2 2 6500 6500 No Use Count 1 CR 74 SH 14 5 STR CR 100 STR 0.96 123 40 7 10 0.00 2 2 2 6500 6500 No Use Count 1 STR 0.96 123 40 7 10 0.00 8 2 2 6500 6500 No Use Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No
Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 7 10 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 0.00 8 2 6500 6500 No Model No Count 1 STR 0.96 123 40 0.00 8 | | SYSCH | | | 959 | 7750
7750 | | | | | 2 12000 | | | | 41 | | URBDRY | | | 713 | 1430
2340 | | | | | 2 14400 | | | | ## CR74 SH 14 # 4.00 108 # 190 30 \$0 0.02 2 2 2 6000 6000 Use Count ## 1 CR 96 CR 100 1.94 20 30 6 10 0.00 2 2 2 2 6000 6000 Use Count ## 1 CR 90 CR 96 2.96 102 180 39 70 0.02 2 2 2 6000 6000 Use Count ## 1 CR 100 STR 0.96 2.96 102 180 39 70 0.02 2 2 2 6000 6000 Use Count ## 1 CR 100 STR 0.96 2.34 40 7 10 0.00 8 2 6000 6000 Use Count ## 1 STR CR 102 0.04 0 40 0 10 0.00 8 2 6000 6000 Use Count ## 1 STR CR 102 0.04 0 40 0 10 0.00 8 2 6000 6000 Use Count ## 1 STR CR 102 0.04 0 40 0 0 0 0 0 0.00 8 2 6000 6000 Use Count ## 1 STR CR 102 0.04 0 40 0 0 0 0 0 0.00 8 2 6000 6000 No Model No Count Derit ## 1 STR 1 SPLIT 0.24 0 0 0 0 0 0 0 0.00 5 2 1800 1800 No Model No Count Derit ## 1 SPLIT 0.24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 41 | RRX | CR 66 | 0.51 | | 2530
500 | 139 | 370 | 0.10 | | 2 13200 | 13200 | Use Model | | 41 | 41 | CR 74 | SH 14 | 4.00 | 108 | 190 | 30 | 50 | 0.02 | 2 | 2 6000 | 6000 | Use Count | | 41 | 41 | CR 90 | CR 96 | 2.96 | 102 | 180 | 39 | 70 | 0.02 | 2 | 2 6000 | 6000 | Use Count | | 42 | 41 | STR | CR 102 | 0.04 | 0 | 40
40 | Ó | 10 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count Derived | | 42 | 42 | SPLIT | END | 0.24 | 0 | 0 | 0 | 0 | 0.00 | 5 | 2 1800 | 1800 | No Model No Count | | 42 | 42 | CR 13 | URBDRY | 1.21 | 206 | 110
430 | 47 | 100 | 0.04 | | 2 6000 | 6000 | Use Count | | 42 | 42 | CL | CR 19 | 0.69 | 178 | 1660
380 | 43 | 90 | 0.03 | 5 | 2 6000 | 6000 | Use Count | | 42 | 42
42 | URBDRY | RRX CL JOHNS | 0.46
0.47 | 0 | 0 | 0 | 0 | 0.00 | | 2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 42 CR 35 CR 37 1.03 92 110 16 20 0.01 4 2 6000 6000 Use count 42 WIDCH CR 29 0.10 0 0 0 0 0.00 5 2 14400 14400 No Model No Count 42 BARR SH 60 1.09 113 289 23 60 0.02 5 2 6000 6000 Use Count 42 SA SH 60 WIDCH 0.91 649 3240 117 580 0.11 5 2 14400 14400 Use Count 42 SOUTHGATE AVE CR 33 0.58 636 1310 204 420 0.05 4 2 14400 14400 Use Count 42 CL CR 31 0.24 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 CL GICREST SPIIT 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 WIDCH CL GICREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 CR 29 WIDCH 0.11 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 CR 29 WIDCH 0.11 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIT CL GICREST 0.31 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPIIR CR 33 SOUTHGATE AVE 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 42 | CR 19 | CR 21 | 0.98 | 0 | 0 | 0 | | 0.00 | 5 | 2 6000 | 6000 | No Model No Count | | 42 BARR SH 60 1.09 113 280 23 60 0.02 5 2 6000 6000 Use Count 42 SH 60 WDCH 0.91 649 3249 117 580 0.11 5 2 14400 14400 Use Count 42 SOUTHGATE AVE CR 33 0.58 636 1310 204 420 0.05 4 2 14400 14400 Use Count 42 CL CR 31 0.24 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 CL GILGREST SPUT 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 WDCH CL GILGREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 CR 29 WDCH 0.11 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.23 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.23 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILGREST 0.23 810 4050 314 650 0.12 4 2 14400 14400 Use Count 42 SPUT CL 0.08 1652 3400 314 650 0.12 4 2 14400 14400 Use Count 42 CR 31 SPUT 0.08 1652 3400 314 650 0.12 4 2 14400 14400 Use Count 42 RRX SOUTHGATE AVE 0.10 0 0 0 0 0 0.00 4 2 14400 14400 Use Count 42 RRX SOUTHGATE AVE 0.10 0 0 0 0 0 0.00 4 2 14400 14400 No Model No Count 42 SRR CR 33 CR 35 1.00 509 1050 193 400 0.04 4 2 14400 14400 No Model No Count 42 SRC SRT CR 33 CR 35 1.00 509 1050 193 400 0.04 4 2 14400 14400 No Model No Count 42 SRC | 42 | CR 35 | CR 37 | 1.03 | 92
0 | 110
0 | 16 | 20 | 0.01 | | 2 6000 | 6000 | Use Count | | 42 SOUTHGATE AVE CR 33 0.58 636 1310 204 420 0.05 4 2 14400 14400 Use Count 42 CL CR 31 0.24 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 WIDCH CL GILCREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 WIDCH CL GILCREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILCREST 0.12 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPUT CL GILCREST 0.22 810 4050 154 770 0.14 5 2 14400 14400 Use Count 42 SPLIT CL< | 42 | BARR | SH 60 | 1.09 | | 280
3240 | 23 | 60 | 0.02 | | 2 6000 | 6000 | Use Count | | 42 | 42 | SOUTHGATE AVE | CR 33 | 0.58 | 636 | 1310 | 204 | 420 | 0.05 | | 2 14400 | 14400 | Use Count | | 42 | 42 | CL GILCREST | SPLIT | 0.22 | 810 | 4050 | 154 | 770 | 0.14 | 5 | 2 14400 | 14400 | Use Count | | 42 SPLIT CL 0.08 1652 3400 314 650 0.12 4 2 14400 14400 Use Count | 42 | CR 29 | WIDCH | 0.11 | 810 | 4050
4050 | 154 | 770 | 0.14 | 5
5 | 2 14400 | 14400 | Use Count | | 42 CL SH 85 0.14 1652 3400 314 650 0.12 4 2 14400 14400 N Model No Count 42 RRX SOUTHGATE AVE 0.10 0 0 0.00 4 2 14400 14400 N Model No Count 42 SH 85 RRX 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 42 SR 85 1.00 509 1050 193 400 0.04 4 2 14400 14400 No Model No Count 42 STR CR 83 1.00 509 1050 193 400 0.04 4 2 14400 14400 No Model No Count 42 STR CR 43 0.41 94 310 37 40 0.01 4 2 6000 6000 Use Count 42 STR CR 37 SRFCH 0.98 90 310 | 42 | SPLIT | CL | 0.08 | 1652 | 3400
3750 | 314 | 650 | 0.12 | 4 | 2 14400 | 14400 | Use Count | | 42 SH 85 RRX 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 42 CR 33 CR 35 1.00 509 1050 193 400 0.04 4 2 14400 14400 Use Count 42 STR CR 43 0.41 94 310 37 40 0.01 4 2 6000 6000 Use Count 42 SRFCH STR 0.15 109 35 40 0.01 4 2 6000 6000 Use Count 42 SRFCH 0.98 90 110 15 20 0.01 4 2 6000 6000 Use Count 42 SRFCH CR 37 SRFCH 0.98 90 110 15 20 0.01 4 2 14400 14400 Use Count 42 SRFCH CR 37 SRFCH 0.02 20 20 | 42 | CL | SH 85 | 0.14 | 1652 | 3400 | 314 | 650 | 0.12 | 4 | 2 14400 | 14400 | Use Count | | 42 STR CR43 0.41 94 310 37 40 0.01 4 2 6000 6000 Use Count 42 SRFCH STR 0.15 109 33 35 40 0.01 4 2 6000 6000 Use Count 42 CR37 SRFCH 0.98 90 110 15 20 0.01 4 2 6000 6000 Use Count 42 SRFCH CR39 0.02 90 220 15 40 0.01 4 2 14400 14400 Use Count | 42 | SH 85 | RRX | 0.02 | 0 | 0 | Ö | Ö | 0.00 | 4 | 2 14400 | 14400 | No Model No Count | | 42 SRFCH STR 0.15 109 130 35 40 0.01 4 2 6000 6000 Use Count 42 CR 37 SRFCH 0.98 90 110 15 20 0.01 4 2 6000 6000 Use Count 42 SRFCH CR 39 0.02 90 220 15 40 0.01 4 2 14400 14400 Use Count | 42 | STR | CR 43 | 0.41 | | 1050
110 | 37 | 40 | 0.01 | 4 | 2 6000 | 6000 | Use Count | | 42 SRFCH CR 39 0.02 90 220 15 40 0.01 4 2 14400 14400 Use Count | 42 | SRFCH
CR 37 | STR
SRFCH | 0.98 | 109
90 | 130
110 | 15 | 20 | 0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 42 CR 39 SRFCH 0.01 109 260 35 80 0.01 4 2 14400 14400 Use Count | 42 | SRFCH | CR 39 | 0.02 | 90 | 220
260 | 15 | 40 | 0.01 | 4 | 2 14400 | 14400 | Use Count | | 42 | STR | STR | 1.16 | 102 | 120 | 36 | 40 | 0.01 | 4 2 | 6000 | 6000 | Use Count | |----------------|-------------------------|-------------------------|----------------------|---------------------|---------------------|-----------------|--------------------|----------------------|-------------------|-------------------------|-------------------------|--| | 42
42 | STR
CR 43 | STR
STR | 0.27
1.94 | 109
117 | 130
140 | 35
35 | 40
40
40 | 0.01
0.01 | 4 2
4 2 | 6000 | 6000
6000 | Use Count
Use Count | | 42
42 | STR
SRFCH | SRFCH
SRFCH | 1.01 | 105
0 | 120
0 | 46
0 | 50
0 | 0.01
0.00 | 4 2
4 2 | 6000
14400 | 6000
14400 | Use Count
No Model No Count | | 42
42 | SRFCH
SRFCH | CR 49
SRFCH | 0.02
0.02 | 105
105 | 250
250 | 46
46 | 110
110 | 0.01
0.01 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 42
42 | CR 49
CR 53 | SRFCH
CR 57 | 0.02
2.00 | 0
62 | 0
70 | 0
26 | 0
30 | 0.00
0.01 | 4 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Count | | 43
43 | RRX
CR 10 | CR 54
SH 52 | 1.09
1.50 | 1323
0 | 2730
0 | 318
0 | 660
0 | 0.09 | 4 <u>2</u> 7 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 43
43 | SH 52
CR 30 |
END
CR 32 | 0.14
0.99 | 0
969 | 0
1910 | 0
465 | 0
910 | 0.00 | 7 <u>2</u>
7 2 | 1800
14400 | 1800
14400 | No Model No Count
Use Count | | 43
43 | CR 28
CR 26 | CR 30
SRFCH | 1.00
0.97 | 446
110 | 880
160 | 227
51 | 450
70 | 0.03
0.01 | 7 2
7 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 43
43 | SRFCH
CR 42 | CR 28
SRFCH | 0.03
0.99 | 0
172 | 180
200 | 0
38 | 10
40 | 0.01
0.02 | 7 2 | 14400
6000 | 14400
6000 | Use Model
Use Count | | 43
43 | CR 38
CR 44 | CR 42
STR | 2.00
2.50 | 70
956 | 80
1970 | 18
244 | 20
500 | 0.01
0.07 | 4 2
4 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 43
43 | SRFCH
CR 50 | CR 44
RRX | 0.01
0.91 | 172
1333 | 400
2750 | 38
307 | 90
630 | 0.01
0.10 | 4 2
4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 43
43 | STR
CR 88 | CR 50
CR 90 | 0.49
0.99 | 1238
620 | 2550
880 | 297
254 | 610
360 | 0.09
0.03 | 4 2
2 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 43
43 | STR
CR 62 | STR
URBDRY | 0.33
1.00 | 1520
1201 | 2110
1210 | 380
348 | 530
110 | 0.07
0.05 | 2 2
4 2 | 14400
13200 | 14400
13200 | Use Count
Use Model | | 43
43 | STR
CR 54 | PG
STR | 0.60
0.02 | 0 | 0 | 0 | 0 | 0.00 | 4 2 | 6000 | 6000
6000 | No Model No Count
Use Model | | 43
43 | SH 263
RRX | CR 62
STR | 0.74
1.38 | 0
1793 | 2730
3600 | 0
753 | 670
1510 | 0.10
0.13 | 4 2 | 13200
14400 | 13200
14400 | Use Model
Use Count | | 43
43 | URBDRY
SH 392 | RRX
STR | 0.52
0.72 | 1668
1536 | 3350
2130 | 534
384 | 1070
530 | 0.13
0.07 | 4 2
2 2 | 13200
14400 | 13200
14400 | Use Count
Use Count | | 43
43 | STR
STR | SH 392
STR | 0.11
0.53 | 0
1528 | 1470
2120 | 0
382 | 90
530 | 0.05
0.07 | 4 2
2 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 43
43 | STR
STR | STR
SH 14 | 0.14
1.88 | 1520
1069 | 2110
1480 | 380
278 | 530
390 | 0.07
0.05 | 2 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 43
43 | STR
STR | STR
CR 74 | 2.05
1.35 | 1149
1528 | 1590
2120 | 282
367 | 390
510 | 0.06
0.07 | 2 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 43
43 | CR 74
SH 14 | STR
WIDCH | 0.07
2.97 | 1214
920 | 1680
1310 | 304
345 | 420
490 | 0.06
0.05 | 2 2 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 43
43 | CR 90 | CR 88
CR 96 | 0.02
2.98 | 892
50 | 1270
100 | 330 | 470
0 | 0.04
0.01 | 2 2 | 14400 | 14400
6000 | Use Count Use Count | | 43
43 | CR 102
CR 108 | END
CR 110 | 0.90
0.99 | 0 | 0 | 0 | 0 | 0.00 | 8 2
8 2 | 1800 | 1800
6000 | No Model No Count No Model No Count | | 44
44 | CR 13
CR 11 | CR 15
CR 13
CR 19 | 0.99
1.00
0.51 | 0
1856 | 7900
7900 | 0
204 | 340
490
790 | 0.48
0.27 | 5 2
5 2 | 6000
14400 | 6000
14400 | Use Model Use Model | | 44
44 | CL JOHNSTOWN
CL | CL MILLIKEN | 0.11 | 115
0 | 10090 | 10
0 | 800 | 0.83
0.84 | 5 2
5 2 | 6000 | 6000
6000 | Use Model
Use Model | | 44
44
44 | STR
WIDCH
CR 35 | PCG
CR 51 | 0.71
0.72
0.52 | 732
1763 | 1470
3450 | 0
242
793 | 0
490
1550 | 0.00
0.05
0.12 | 4 2
4 2
4 2 | 1800
14400
14400 | 1800
14400 | No Model No Count Use Count | | 44
44
44 | SH 60 | CR 35.5
CR 29 | 1.01 | 617 | 1280 | 167 | 350 | 0.04 | 5 2
4 2 | 14400 | 14400
14400 | Use Count Use Count | | 44
44
44 | CR 33
CR 31
CR 29 | SH 85
CR 33
CR 31 | 0.13
1.01
0.99 | 1522
0 | 4150
5850 | 700
0
160 | 137
300 | 0.01
0.14
0.20 | 5 2
5 2 | 14400
14400
14400 | 14400
14400 | No Model No Count Derived Use Model | | 44
44
44 | RRX
SH 85 | CR 35
RRX | 0.99
0.81
0.04 | 640
1522
1522 | 2980 | 700
700 | 460
1370
137 | 0.20
0.10
0.01 | 4 2
4 2 | 14400
14400
14400 | 14400
14400
14400 | Use Model Use Count No Model No Count Derived | | 44
44 | STR
CR 39 | CR 43
CR 41 | 0.30
0.99 | 976
1015 | 2010 | 390
386 | 800
800 | 0.07
0.07 | 4 2 | 14400
14400
14400 | 14400
14400
14400 | Use Count Use Count | | 44
44 | CR 37
CR 35.5 | CR 39
CR 37 | 1.02
0.51 | 1727
1726 | 3380
3380 | 794
759 | 1550
1480 | 0.12
0.12 | 4 2 | 14400 | 14400
14400 | Use Count
Use Count | | 44
44 | CR 41
STR | STR
STR | 0.24
0.45 | 976
976 | 2010 | 390
390 | 800
800 | 0.07 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | CR 45
CR 43 | CR 47
CR 45 | 1.00 | 1118
1208 | 2300
2490 | 369
387 | 760
800 | 0.08 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | STR
CR 47 | WIDCH
STR | 0.73
0.10 | 1082
1082 | 2230
2230 | 368
368 | 760
760 | 0.08 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | WIDCH
SRFCH | SRFCH
WIDCH | 0.11
0.10 | 1082
732 | 2230
1470 | 368
242 | 760
490 | 0.08 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | CR 49
SRFCH | SRFCH
CR 49 | 0.04
0.04 | 732
1082 | 0 | 242
368 | 0 | 0.00 | 4 2 | 14400
14400 | 14400
14400 | Removed
Removed | | 44
44 | WIDCH
CR 55 | WIDCH
CR 57 | 0.10
1.00 | 732
178 | 1470
360 | 242
55 | 490
110 | 0.05
0.01 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | CR 53
CR 51 | CR 55
STR | 1.00
0.81 | 251
618 | 500
1240 | 78
216 | 160
430 | 0.02
0.04 | 4 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 44
44 | STR
CR 57 | CR 53
END | 0.19
0.66 | 618
0 | 1240
0 | 216
0 | 430
0 | 0.04
0.00 | 4 2
4 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 44
44 | STR
SH 34 | STR
STR | 0.64
0.39 | 0 | 0 | 0 | 0 | 0.00 | 4 2
4 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | 44
45 | RRX
RRX | CR 87
CR 54 | 1.49
0.72 | 0
220 | 0
250 | 0
37 | 0
40 | 0.00
0.02 | 8 2
4 2 | 1800
6000 | 1800
6000 | No Model No Count
Use Count | | 45
45 | STR
168TH AV | STR
CR 4 | 1.41
1.00 | 1173
1474 | 2280
2940 | 235
369 | 270
300 | 0.08
0.10 | 7 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 45
45 | CR 4
CR 10 | STR
CL | 1.04
0.25 | 1303 | 2630
3180 | 300
0 | 610
340 | 0.09
0.11 | 7 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | 45
45 | STR
CR 42 | CR 10
SRFCH | 0.56
1.00 | 1173
95 | 3190
110 | 235
16 | 340
20 | 0.11
0.01 | 7 2 | 14400 | 14400
6000 | Use Model
Use Count | | 45
45 | CR 40
SRFCH | CR 42
CR 46 | 1.00
0.99 | 50
0F | 60
330 | 13
16 | 10
20 | 0.00
0.01 | 4 2
4 2
4 2 | 6000 | 6000
6000 | Use Count Use Count | | 45
45
45 | SRFCH
CR 44 | CR 44
SRFCH | 0.01
0.01
0.25 | 95
50
220 | 120 | 16
13
37 | 40
30
40 | 0.01
0.00
0.02 | 4 2
4 2
4 2 | 14400
14400
6000 | 14400
14400
6000 | Use Count Use Count | | 45
45
45 | CR 52
STR
CR 70 | RRX
CR 90
CR 74 | 2.64
2.03 | 220
26 | 50
230 | 37
6
35 | 10
60 | 0.02
0.00
0.02 | 2 2 | 6000
6000
6000 | 6000
6000 | Use Count Use Count Use Count | | 45
45
45 | CR 70
CR 62
CR 54 | CR 64
URBDRY | 1.00
0.95 | 134
151
576 | 1200
1100 | 45
202 | 150
420 | 0.02
0.05
0.04 | 4 2
4 2 | 13200
14400 | 13200
14400 | Use Model
Use Count | | 45
45
45 | URBDRY
STR | SH 34
CL GREELEY | 0.95
0.18
0.23 | 0
0 | 1190
1110 | 0 | 420
420
220 | 0.04
0.04
0.04 | 4 2
4 2
4 2 | 14400
14400
13200 | 14400
14400
13200 | No Model No Count Derived Use Model | | 45
45
45 | CR 58.25
STR | STR
STR | 0.46
0.09 | 0 | 1330
1400 | 0 | 190
240 | 0.05
0.05 | 4 2 4 2 | 13200
14400
13200 | 14400
13200 | Use Model
Use Model | | 45
45
45 | CR 66
CR 64 | SH 392
CR 66 | 1.01
1.00 | 89
179 | 1400
100
1330 | 13
54 | 10
150 | 0.05
0.01
0.05 | 4 2
4 2
4 2 | 6000
13200 | 6000
13200 | Use Count
Use Model | | 45
45 | STR
SH 392 | STR
STR | 0.41
0.23 | 312
0 | 550
550 | 144
0 | 250
250 | 0.05
0.05 | 2 2 | 6000 | 6000
6000 | Use Count No Model No Count Derived | | 45
45 | STR
STR | CR 70
STR | 0.25
0.14 | 0 | 550
550 | 0 | 250
250 | 0.05
0.05 | 2 2 | 6000 | 6000
6000 | No Model No Count Derived
No Model No Count Derived | | 45
45 | CR 74
CR 84 | CR 80
STR | 3.10
0.26 | 50
12 | 90
20 | 11
3 | 20
10 | 0.01
0.00 | 2 2 | 6000 | 6000
6000 | Use Count
Use Count | | 45
45 | CR 102
CR 114 | CR 114
CR 122 | 6.11
4.06 | 5 | 10
10 | 1
1 | 0 | 0.00 | 8 2
8 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 46
46 | CR 1
CL JOHNS/CR 15 | STR SH 25
OLD CL | 4.16
0.47 | 140
0 | 950
0 | 24
0 | 40
0 | 0.08 | 5 2
5 2 | 6000 | 6000
6000 | Use Model
No Model No Count | | 46
46 | SH 25
OLD CL | CR 13
CR 17 | 2.02
0.47 | 211
0 | 470
0 | 36
0 | 80
0 | 0.04 | 5 2
5 2 | 6000 | 6000
6000 | Use Count
No Model No Count | | 46
46 | CR 21
SRFCH | MARJORIE
CR 53 | 0.25
1.91 | 0
206 | 0
230 | 0
79 | 0
90 | 0.00
0.02 | 5 2
4 2 | 1800
6000 | 1800
6000 | No Model No Count
Use Count | | 46
46 | CR 35
SH 60 | CR
37
CR 29 | 1.00
1.06 | 105
1166 | 120
5820 | 33
361 | 40
1800 | 0.01 | 4 2
5 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 46
46 | CL
CR 23 | SH 60
CL | 0.86
0.50 | 372
0 | 800
0 | 86
0 | 190
0 | 0.07
0.00 | 5 2
5 2 | 6000 | 6000
6000 | Use Count
No Model No Count | | 46
46 | RRX
CL | CL
RRX | 0.03
0.02 | 0 | 0 | 0 | 0 | 0.00 | 5 2
5 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 46
46 | RRX
CR 31 | CL
CR 33 | 0.02
1.02 | 0
1230 | 0
6140 | 0
443 | 0
2210 | 0.00
0.21 | 5 2
5 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Count | | 46
46 | CR 29
CR 33 | CR 31
CR 35 | 0.99
1.00 | 1174
1396 | 5860
6970 | 340
489 | 1700
2440 | 0.20
0.24 | 5 2
5 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 46
46 | CR 37
CR 45 | CR 43
STR | 3.18
1.44 | 128
169 | 150
190 | 36
59 | 40
70 | 0.01
0.02 | 4 2 | 6000 | 6000
6000 | Use Count
Use Count | | 46 | CR 43.5 | CR 45 | 0.50 | 0 | 200 | 0 | 80 | 0.02 | 4 2 | 6000 | 6000 | No Model No Count Derived | | 46
46 | STR
CR 49 | SRFCH
SRFCH | 0.50 | 169
251 | 190
520 | 59
103 | 70
210 | 0.02 | 4 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | |----------------|-----------------------|--------------------------------|------------------------------|---------------------------|--------------------|-----------------------|------------------------|----------------------|--------|--|--------------------------------|--| | 46 | SRFCH | SRFCH | 0.02 | 169 | 350 | 59 | 120 | 0.01
0.01 | 4 | 2 14400 | 14400 | Use Count | | 46
46 | SRFCH
SRFCH | CR 49
SRFCH | 0.03
0.02 | 169
251 | 520
520 | 59
103 | 120
210 | 0.02 | 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 46
46 | CR 53
CR 59 | CR 57
CR 61 | 2.00
0.98 | 101
109 | 120
130 | 35
41 | 40
50 | 0.01 | 4 | 2 6000 | 6000
6000 | Use Count
Use Count | | 46 | CR 57 | CR 59 | 1.00 | 164 | 330 | 61
0 | 120
0 | 0.01 | 4 | 2 14400 | 14400 | Use Count | | 46
47 | CR 61
CR 52 | END
RRX | 0.46
0.65 | 0
438 | 880 | 88 | 180 | 0.00
0.03 | 4 | 2 1800
2 14400 | 1800
14400 | No Model No Count
Use Count | | 47
47 | 168TH AV
BGN | SH 52
CR 34.5 | 5.02
1.39 | 108
80 | 120
90 | 17
27 | 10
30 | 0.01
0.01 | 7 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 47
47 | CR 42
CR 38 | SRFCH
STR | 1.03
1.66 | 169 | 200 | 49
35 | 60
40 | 0.02
0.01 | 4
4 | 2 6000 | 6000 | Use Count | | 47 | CR 34.5 | CR 38 | 1.50 | 47 | 50 | 19 | 20 | 0.00 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 47
47 | STR
CR 48 | CR 42
CR 50 | 0.37
0.98 | 82
274 | 90
330 | 28
104 | 30
20 | 0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Model | | 47
47 | CR 46 | CR 48 | 1.00 | 150 | 330 | 45 | 20 | 0.03 | 4 | 2 6000 | 6000 | Use Model | | 47 | SRFCH
SRFCH | CR 46
CR 44 | 0.99
0.01 | 135
169 | 400 | 43
49 | 10
110 | 0.02
0.01 | 4 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Count | | 47
47 | CR 44
CR 50 | SRFCH
CR 52 | 0.01
1.00 | 0
243 | 150
330 | 0
32 | 10
20 | 0.01
0.01 | 4 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 47
47 | STR | CR 74 | 2.22
0.13 | 412 | 690 | 153
0 | 260
5375 | 0.06
0.16 | 2 | 2 6000
4 26400 | 6000 | Use Count | | 47 | CR 62
CR 54 | WIDCH
URBDRY | 0.92 | 1089 | 2130 | 316 | 620 | 0.07 | 4 | 2 14400 | 26400
14400 | No Model No Count Derived
Use Count | | 47
47 | RRX
URBDRY | CR 54
SH 34 | 0.35 | 438
1089 | 880
2130 | 88
316 | 180
620 | 0.03
0.07 | 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 47
47 | CR 60.5 | CL GREELEY
WIDCH | 0.20 | 4295 | 8620 | 2663
2663 | 5350
5350 | 0.33 | 4 | 2 13200
4 26400 | 13200
26400 | Use Count
Use Count | | 47 | WIDCH | CR 62 | 0.11 | 4295
4295 | 8620 | 2663 | 5350 | 0.16 | 4 | 4 26400 | 26400 | Use Count | | 47
47 | WIDCH | WIDCH
CR 64.5 | 0.63 | 4182
0 | 8400
8510 | 2509
0 | 5040
5375 | 0.15
0.16 | 4 | 4 28800
4 26400 | 28800
26400 | Use Count
No Model No Count Derived | | 47
47 | WIDCH
CR 64 | WIDCH
WIDCH | 0.76
0.11 | 0 | 8510
8510 | 0 | 5375
5375 | 0.16
0.16 | 4 | 4 26400
4 26400 | 26400
26400 | No Model No Count Derived
No Model No Count Derived | | 47 | WIDCH | CR 64 | 0.11 | 0 | 8510
8510 | 0 | 5375 | 0.16 | 4 | 4 26400 | 26400 | No Model No Count Derived | | 47
47 | WIDCH
CR 64.5 | WIDCH
WIDCH | 0.11
0.22 | 0 | 8510
8510 | 0 | 5375
5375 | 0.16
0.16 | 4 | 4 26400
4 26400 | 26400
26400 | No Model No Count Derived
No Model No Count Derived | | 47 | CR 66 | WIDCH | 0.11 | 4182 | 8400 | 2509 | 5040 | 0.15 | 4 | 4 28800 | 28800 | Use Count | | 47
47 | WIDCH
STR | CR 66
STR | 0.17
0.59 | 0
521 | 880
880 | 0
177 | 5375
300 | 0.16
0.07 | 2 | 4 26400
2 6000 | 26400
6000 | No Model No Count Derived
Use Count | | 47
47 | SRFCH
WIDCH | SH 392
WIDCH | 0.18
0.08 | 4182
4182 | 8400
8400 | 2504
2509 | 5030
5040 | 0.15
0.15 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 47 | SRFCH | SRFCH | 0.05 | 521 | 1070 | 177 | 360 | 0.04 | 4 | 2 14400 | 14400 | Use Count | | 47
47 | SH 392
SRFCH | SRFCH
STR | 0.11
0.06 | 521
521 | 880 | 177
177 | 360
300 | 0.04
0.07 | 2 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 47
48 | CR 74
CL | SH 14
SH 25 | 4.00
0.44 | 121
0 | 200
9880 | 39
0 | 60
700 | 0.02
0.34 | 2 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Model | | 48
48 | CR 904 CO LN RD | CR 3 | 0.80 | 70
0 | 2860 | 9 | 190
700 | 0.24
0.37 | 5 | 2 6000
2 13200 | 6000 | Use Model | | 48 | CR 7
SRFCH | CR 53 | 1.91 | 118 | 140 | 26 | 30 | 0.01 | 4 | 2 6000 | 13200
6000 | Use Model
Use Count | | 48
48 | CR 35
CR 43 | SH 85
CR 47 | 0.93
1.99 | 170
104 | 430
120 | 97
24 | 250
30 | 0.04 | 5 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 48 | STR | SRFCH | 0.52 | 82 | 100 | 21 | 20 | 0.01 | 4 | 2 6000 | 6000 | Use Count | | 48
48 | CR 47
CR 49 | STR
SRFCH | 0.44
0.02 | 82
0 | 5700 | 21
0 | 20
330 | 0.20 | 4 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Model | | 48
48 | SRFCH
SRFCH | SRFCH
CR 49 | 0.02
0.02 | 82
82 | 190
190 | 21
21 | 50
50 | 0.01
0.01 | 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 48
48 | SRFCH
CR 53 | SRFCH
CR 61 | 0.02
3.98 | 121
58 | 260 | 27
19 | 60
20 | 0.01
0.01 | 4 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 49 | CR 52 | WIDCH | 0.74 | 5846 | 12190 | 26 | 5730 | 0.21 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | CR 4
CR 4 | SH 52
SH 52 | 2.01
1.00 | 78
41 | 180
60 | 15
8 | 30
10 | 0.01 | 7 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 49
49 | SH 52
CR 4 | CL HUDSON
SH 52 | 0.56
1.00 | 0
126 | 231 | 0
16 | 9
40 | 0.01
0.01 | 7 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Count | | 49 | CL | CL | 0.87 | 0 | 231 | 0 | 9 | 0.01 | 7 | 2 14400 | 14400 | Use Model | | 49
49 | CL
CL | CR 16
CL | 0.44
0.12 | 0 | 231
231 | 0 | 9 | 0.01
0.01 | 7 7 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 49
49 | SYSCH
WIDCH | CL
CR 34.5 | 0.01
0.33 | 0
5506 | 231 | 0
2863 | 9
8040 | 0.01
0.22 | 7 | 2 14400
4 28800 | 14400
28800 | Use Model
Use Count | | 49 | STR | WIDCH | 2.49 | 0 | 19485 | 0 | 8775 | 0.34 | 7 | 4 28800 | 28800 | No Model No Count Derived | | 49
49 | WIDCH
CR 18.5 | WIDCH
WIDCH | 1.44
0.11 | 9455
9455 | 19090
19090 | 4160
4160 | 8400
8400 | 0.33
0.33 | 7 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49
49 | CR 18
WIDCH | CR 18.5
STR | 0.24
1.11 | 6433
9556 | 14800 | 1994
4014 | 7090
8110 | 0.26
0.34 | 7 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49 | CR 22 | WIDCH | 0.20 | 9556 | 19300 | 4014 | 8110 | 0.34 | 7 | 4 28800 | 28800 | Use Count | | 49
49 | WIDCH
WIDCH | CR 22
CR 32 | 0.20
0.83 | 9455
9739 | 19090
19670 | 4160
4675 | 8400
9440 | 0.33
0.34 | 7 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49
49 | WIDCH
WIDCH | CR 30
CR 32 | 0.20 | 0 0720 | 19485 | 0
4675 | 8775
9440 | 0.34
0.34 | 7 | 4 28800
4 28800 | 28800
28800 | No Model No Count Derived
Use Count | | 49 | CR 32 | WIDCH | 0.89 | 9739
5842 | 13340 | 2162 | 7440 | 0.23 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | WIDCH
CR 34 | CR 34
WIDCH | 0.11
0.18 | 5842
5506 | 13340
12580 | 2162
2863 | 7440
8040 | 0.23
0.22 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49
49 | WIDCH
CR 38 | CR 44
CR 40 | 0.84
1.00 | 9809
5822 | 19690
13300 | 4414
2096 | 8860
7290 | 0.34
0.23 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49 | CR 36 | CR 38 | 1.00 | 5642 | 12890 | 2144 | 7400 | 0.22 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | CR 34.5
WIDCH | CR 36
CR 42 | 0.49
0.17 | 6003
5100 | 13/10
11650 | 2341
2397 | 7850
7980 | 0.24
0.20 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49
49 | CR 40
CR 42 | WIDCH
WIDCH | 0.82
0.17 | 5100
9809 | 11650
19690 | 2397
4414 | 7980
8860 | 0.20
0.34 | 4 | 4 28800
4
28800 | 28800
28800 | Use Count
Use Count | | 49 | CR 48 | WIDCH | 0.89 | 4976 | 11370 | 2488 | 5680 | 0.20 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | CR 46
CR 44 | CR 48
CR 46 | 1.00
0.99 | 0
9937 | 15660
19950 | 0
5167 | 8025
10370 | 0.27
0.35 | 4 | 4 28800
4 28800 | 28800
28800 | No Model No Count Derived
Use Count | | 49
49 | WIDCH
CR 50 | CR 52
WIDCH | 0.82
0.18 | 5335
5335 | 12190 | 2507
2507 | 5730
5730 | 0.21
0.21 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49 | WIDCH | CR 50 | 0.11 | 4976
25 | 11370 | 2488 | 5680 | 0.20 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | CR 86
SH 392 | SRFCH
STR | 2.00
1.77 | 99 | 40
170 | 8
25 | 10
40 | 0.00
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 49
49 | SH 263
SRFCH | CR 62.5
US 34 | 0.99
0.86 | 182
5685 | 370
8370 | 56
52 | 120
4270 | 0.01
0.15 | 4 | 2 14400
4 28800 | 14400
28800 | Use Count
Use Count | | 49 | RRX | WIDCH | 0.11 | 5685 | 8370
13100 | 52 | 4270 | 0.15 | 4 | 4 28800 | 28800 | Use Count | | 49
49 | WIDCH
CR 54 | CR 54
RRX | 0.17
0.12 | 6289
5685 | 12190
8370 | 52
52 | 5730
4270 | 0.21
0.15 | 4 | 4 28800
4 28800 | 28800
28800 | Use Count
Use Count | | 49
49 | CR 66
CR 62.5 | SH 392
RRX | 1.01
1.00 | 83
116 | 100 | 26
40 | 30
50 | 0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 49 | RRX | CR 66 | 0.51 | 90 | 130
100 | 32 | 40 | 0.01 | 4 | 2 6000 | 6000 | Use Count | | 49
49 | SRFCH
STR | SH 14
SRFCH | 3.87
1.22 | 89
105 | 160
180 | 15
28 | 30
50 | 0.01
0.02 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 49
49 | CR 74
SRFCH | SRFCH
CR 74 | 0.12
0.01 | 102
105 | 150
150 | 15
28 | 20
40 | 0.01
0.01 | 2 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 49 | SH 14 | CR 86 | 2.00 | 43 | 80 | 10 | 20 | 0.01 | 2 | 2 6000 | 6000 | Use Count | | 49
49 | CR 102
SRFCH | CR 114
CR 102 | 5.96
5.98 | 20
54 | 30
90 | 7
17 | 10
30 | 0.00
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 49
49 | CR 90
SRFCH | SRFCH
CR 90 | 0.01
0.01 | 54
25 | 80
40 | 17
8 | 20
10 | 0.00 | 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 49 | CR 114 | CR 122 | 4.04 | 16 | 30 | 6 | 10 | 0.00 | 8 | 2 6000 | 6000 | Use Count | | 50
50 | CR 13
CL JOHNSTOWN | CR 17
CL | 1.96
0.25 | 2858
624 | 6320
4580 | 400
106 | 260
330 | 0.22
0.38 | 3 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Model | | 50
50 | CL
CL | CL
CR 13 | 0.10
0.49 | 0 | 4580
4580 | 0 | 330
330 | 0.38
0.38 | 3 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 50 | CR 13 | CR 13 | 0.11 | 1712
942 | 2070 | 308 | 80 | 0.08 | 3 | 2 13200 | 13200 | Use Model | | 50 | WIDCH | CR 53
CR 43 | 1.94
1.00 | 666 | 1840
1300 | 349
206 | 680
400 | 0.06
0.05 | 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 50
50 | CR 41 | | | | | | | | 4 | | | | | 50
50
50 | STR | SRFCH | 0.79 | 115
115 | 130 | 33
33 | 40
40 | 0.01
0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 50
50 | | SRFCH
STR
WIDCH
SRFCH | 0.79
0.17
0.04
0.02 | 115
115
1841
115 | 130
130
3600 | 33
33
700
33 | 40
40
1370
60 | 0.01
0.13
0.01 | | 2 6000
2 6000
2 14400
2 14400 | 6000
6000
14400
14400 | Use Count Use Count Use Count Use Count | | | 50 | CR 61 | SH 34 | 1.40 | 184 | 210 | 75 | 80 | 0.02 | 4 | 2 | 6000 | 6000 | Use Count | |---|----------|----------------|----------------|--------------|--------------|----------------|--------------|--------------|--------------|---------------|-----|----------------|----------------|------------------------| | 10 | 50 | CR 55 | CR 57 | 1.00 | 450 | 880
1220 | 189 | 370 | 0.03 | 4 | 2 | 14400 | 14400 | Use Count | | 10 | 50 | CR 59 | CR 61 | 1.04 | 334 | 650 | 170 | 330 | 0.02 | 4 | 2 | 14400 | 14400 | Use Count | | March | 50 | CR 57 | STR | 0.21 | 322 | 630
630 | 148 | 290 | 0.02 | 4 | 2 | | | Use Count
Use Count | | Column | | | | | | 130
150 | | | | | 2 | | | | | Dec | 50 | SH 34 | SRFCH | 0.08 | 184 | 370
920 | 75 | 150 | 0.01 | | 2 | 14400 | 14400 | Use Count | | 100 | 50
50 | | RRX | 0.03 | | 920 | 150 | 290 | 0.03 | | 2 | 14400 | 14400 | Use Count | | 1 | 50 | STR | CR 69 | 0.13 | | 920 | 150 | 290 | 0.03 | 4 | 2 | 14400 | 14400 | Use Count | | 1 | 51 | CR 50 | RRX | 2.39 | 105 | 120 | 33 | 40 | 0.01 | | 2 | 6000 | 6000 | Use Count | | 1 | 51 | | SH 52 | 2.02 | | 0
60 | 7 | | 0.01 | 7 | 2 | | | Use Count | | 1 | | | | | 0 | 0 | | | | 7 7 | 2 | | | No Model No Count | | 1. | | | | 0.03
1.99 | | 0
40 | | | | 7 | 2 | | | | | 1. | 51 | | | 0.55 | 0 | 0
40 | 0
7 | | | 7
4 | 2 | 6000 | 6000 | | | 10 | 51 | CR 44 | CR 50 | 2.99 | | 110 | 33 | 40 | 0.01 | | 2 | 6000 | 6000 | Use Count | | Section Sect | 51 | STR | STR | 2.03 | | 1630 | 271 | 380 | 0.06 | 2 | 2 | 14400 | 14400 | Use Count | | Chief | 51 | SH 34 | CR 58 | 0.94 | 65 | 80 | 11 | 10 | 0.01 | 4 | 2 | 6000 | 6000 | Use Count | | 19 19 19 19 19 19 19 19 | | CR 58 | GATE | 0.81 | | 140
30 | 7 | 10 | 0.00 | | 2 | 6000 | 6000 | Use Count | | 141 | 51
51 | | | | 828
1241 | 1710
1720 | | | 0.06 | <u>4</u>
2 | 2 | | | Use Count
Use Count | | 1.5 | | STR
CR 74 | | | 550
1024 | 760
1420 | | | 0.03 | 2 | 2 | | | Use Count
Use Count | | 1 | 51 | SH 14 | CR 86 | 1.34 | | 80 | 13 | 20 | 0.01 | 2 | 2 | 6000 | 6000 | Use Count | | 1 | 51 | SRFCH | CR 90 | 0.01 | 32 | 50 | 12 | 20 | 0.00 | 2 | 2 | 14400 | 14400 | Use Count | | 1. 1. 1. 1. 1. 1. 1. 1. | 52 | STR | CR 25 | 1.38 | 190 | 6570 | | 230 | 0.55 | | 2 | 6000 | 6000 | Use Model | | 1.50 | 52 | CR 13 | STR | 0.50 | 72 | 4480
4480 | | 180 | 0.37 | 3 | 2 | 6000 | 6000 | Use Model | | 1.5
1.5 | 52 | CR 17 | CR 17.5 | 0.51 | 558 | 1490
12040 | 67 | 650 | 0.46 | 3 | 2 | 13200 | 13200 | Use Model | | Section Sect | 52 | CR 15.5 | RRX | 0.15 | | 6800
6800 | 0 | 270 | 0.57 | 3 3 | 2 | 6000 | 6000 | Use Model | | 1.50 | 52 | CR 17.5 | RRX | 0.05 | 0 | 15480
1490 | 0 | 720 | 0.59 | 3 | 2 | 13200 | 13200 | Use Model | | STATE C. MARCHEST C. C. C. C. C. C. C. C | 52 | STR | CL MILLIKEN | 0.12 | 0 | 1490 | 0 | 40 | 0.06 | 3 | 2 | 13200 | 13200 | Use Model | | Color | 52 | STR | CL MILLIKEN | 0.03 | 0 | 7650
7650 | 0 | 320 | 0.64 | 3 | 2 | 6000 | 6000 | Use Model | | Color | 52 | CR 27.50 | CL MILLIKEN | 0.49 | 0 | 8410
6840 | Ö | 260 | 0.57 | | 2 | 6000 | 6000 | Use Model | | Second Color | | | | | | 800
1410 | | | | 3 | 2 | 14400
13200 | | Use Model | | STATE | 52 | | | | | 1040
1040 | | | | 4 4 | 2 | | | | | State | | CL | SERVICE RD | 0.41 | | 1410
320 | 0 | 160 | 0.05 | 3 4 | 2 | 13200 | 13200 | Use Model | | STR | 52 | CR 43 | CR 45 | 1.03 | 139 | 320
60 | 28 | 20 | 0.03 | 4 | 2 | 6000 | 6000 | Use Model | | Second | 52 | STR | SRFCH | 0.20 | 50 | 60 | 11 | 10 | 0.01 | 4 | 2 | 6000 | 6000 | Use Count | | Section Content Cont | 52 | SRFCH | CR 49 | 0.03 | 50 | 120 | 11 | 30 | 0.00 | 4 | 2 | 14400 | 14400 | Use Count | | CR CLEEKEY 200 2102 3108 320 1090 0.15 4 2 14400 | 52 | CR 53 | CR 57 | 2.00 | 109 | 110
120 | 32 | 40 | 0.01 | 4 | 2 | 6000 | 6000 | Use Count | | S3 | | CR 50 | | 2.00 | 309
2102 | 470
4330 | 206
820 | | 0.15 | | 2 | 6000
14400 | 14400 | Use Count | | \$3 | | | | | 124
0 | 170
120 | | | | 7 7 | 2 | | | | | \$3 CR 4 SEFCH 0.49 6.1 120 0.1 10 0.00 7 2 2 5000 5000 Lise Model \$3 CR 34 CR 40 3.00 3.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 53 | COLI | CR 4 | 1.00 | | 110
120 | | 20 | 0.01 | 7 7 | 2 | 6000 | 6000 | Use Count | | 931 BEG. CR.16. 0.775 0. 679 0. 0. 0. 0. 0. 0. 0. 0. 7 2 1800. BSO. No Model No Count. 932 SERV. 91.76 CR.20. 3.44 1.51 1.31 2.6 10. 0. 0. 0. 0. 0. 0. 7 2 1.000. SEO. Use Count. 933 SERV. 91.76 0.07 1.24 1.27 31 4.00 0.01 7 2 2. 0.000. SEO. Use Count. 933 SERV. 91.76 0.07 1.24 1.27 31 4.00 0.01 7 2 2. 0.000. SEO. Use Count. 933 SERV. 91.76 0.07 1.24 1.27 31 4.00 0.01 7 2 2. 0.000. SEO. Use Count. 933 SERV. 91.76 0.07 1.24 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 | 53 | CR 4 | SRFCH | 0.49 | 0 | 120 | Ö | 10 | 0.01 | 7 7 | 2 | 6000 | 6000 | Use Model | | \$33 | 53 | BEG | CR 16 | 0.75 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800 | 1800 | No Model No Count | | \$3 STR CR44 0.28 708 309 304 550 0.05 4 2 14400 14400 Use Count \$3.1 CR44 0.78 1.72 648 1.72 | 53 | SH 76 | CR 20 | 1.44 | 54 | 850 | 6 | 10 | 0.01 | 7 | 2 | 6000 | 6000 | Use Count | | S3 | 53 | STR | CR 44 | 0.28 | 708 | 170
1390 | 304 | 590 | 0.05 | | 2 | 14400 | 14400 | Use Count | | \$33 | 53 | CR 44 | CR 50 | 2.99 | 1674 | 1270
3450 | 708 | 1460 | 0.12 | | 2 | 14400 | 14400 | Use Count | | \$33 | | | | | | 240
390 | | 60
120 | | 4 | 2 | | | | | \$3 | 53 | CR 388 | CR 58
CR 60 | 0.42 | 4851
4321 | 10260
9130 | 1601
1469 | 3380
3110 | 0.32 | | 2 | 14400
14400 | 14400 | Use Count | | 53 STR SH 392 0.89 311 380 112 130 0.03 4 2 6000 6000 Use Count 153 RNX STR 0.63 285 310 86 100 0.03 4 2 6000 6000 Use Count 153 RNX STR 0.63 285 310 86 100 0.03 4 2 6000 6000 Use Count 153 CR 10 CR 14 STR 0.03 237 310 38 50 0.00 0.00 12 2 2 6000 6000 Use Count 153 CR 10 CR 14 STR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | 53 | CR 58 | CR 388 | 0.59 | | 9700
8930 | 1560 | 3300 | 0.34 | 4 | 2 | 14400 | 14400 | Use Count | | \$\frac{5}{3}\$\$ \$\text{CR}74\$\$ \$\text{STR}\$\$ \$\text{CR}80\$\$ \$\text{0.98}\$ \$\text{93}\$ \$\text{37}\$ \$\text{RR}\$\$ \$\text{RR}80\$\$ \$\text{0.98}\$ \$\text{93}\$ \$\text{97}\$ \$\text{0.00}\$ \$ | | STR | | | 311 | 350 | | | | | 2 | 6000 | 6000 | Use Count | | \$\frac{53}{53}\$ CR 90 FND 3.00 0 0 0 0 0 0.00 2 2 2 6000 6000 No Model No Count \$\frac{53}{53}\$ CR 108 CR 112 CR 114 0.99 0 0 0 0 0 0.00 8 2 6000 6000 No Model No Count \$\frac{53}{53}\$ CR 113 CR 114 0.99 0 0 0 0 0 0 0.00 8 2 6000 6000 No Model No Count \$\frac{53}{54}\$ CR 113 CR 114 0.99 0 0 0 0 0 0 0.00 8 2 6000 6000 No Model No Count \$\frac{53}{54}\$ CR 113 CR 114 0.99 0 0 0 0 0 0 0.00 8 2 6000 6000 No Model No Count \$\frac{53}{54}\$ CR 114 0.99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | CR 74 | | | 237 | 390 | 38 | | | 2 | 2 | | 6000 | Use Count | | S3 | 53 | CR 90 | END | 3.00 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 6000 | 6000 | No Model No Count | | 54 STR RRX 0.52 5627 32850 844 1850 0.43 3 4 38400 38400 Use Model 54 CR13 WIDCH 0.18 0 33940 0 1970 0.44 3 4 38400 38400 Use Model 54 CR17 STR 1.47 5534 17670 719 880 0.25 3 4 38400 38400 Use Model 54 RRX CR17 STR 1.47 5534 17670 719 880 0.25 3 4 36000 38600 Use Model 54 RRX CR17 0.61 5507 28700 826 1450 0.35 3 4 36000 36000 Use Model 54 SUBECH CR51 0.82 811 950 97 110 0.08 4 2 6000 5000 Use Model 54 SUBECH CR51 | 53 | CR 112 | CR 114 | 0.99 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 54 WIDCH STR 0.51 5668 33940 794 1970 0.44 3 4 38400 33400 Use Model 54 CR 17 STR 1.47 5534 17670 719 880 0.25 3 4 36000 36000 Use Model 54 RRX CR 17 0.61 5507 25200 826 1450 0.35 3 4 36000 36000 Use Model 54 RRX RRX 0.17 0 31110 0 1700 0.43 3 4 36000 36000 Use Model 54 STR SH 257 0.51 0 22570 0 1150 0.31 3 4 36000 36000 Use Model 54 STR SH 257 0.51 0 22570 0 1150 0.31 3 4 36000 36000 Use
Model 54 SLRECH CR 51 0.82 | 54 | STR | RRX | 0.52 | 5627 | 0
32850 | 844 | 1850 | 0.43 | 3 | 4 | 38400 | 38400 | Use Model | | 54 CR.17 STR 1.47 5534 37670 719 880 0.25 3 4 36000 36000 Use Model 54 RRX RRX 0.17 0 3110 0 1700 0.43 3 4 36000 36000 Use Model 54 STR SH 257 0.51 0 22570 0 1150 0.31 3 4 36000 36000 Use Model 54 SURFCH CR 51 0.82 811 950 97 110 0.08 4 2 6000 6000 Use Model 54 SURFCH CR 51 0.82 811 950 97 110 0.08 4 2 6000 6000 Use Model 54 SURFCH CR 51 0.82 811 950 97 110 0.08 4 2 1400 Use Model 54 USBORY STR STR STR STR <td>54
54</td> <td>WIDCH
CR 13</td> <td>STR
WIDCH</td> <td>0.51
0.18</td> <td>5668
0</td> <td>33940
33940</td> <td>794
0</td> <td>1970
1970</td> <td>0.44
0.44</td> <td>3</td> <td>4</td> <td>38400
38400</td> <td>38400
38400</td> <td>Use Model
Use Model</td> | 54
54 | WIDCH
CR 13 | STR
WIDCH | 0.51
0.18 | 5668
0 | 33940
33940 | 794
0 | 1970
1970 | 0.44
0.44 | 3 | 4 | 38400
38400 | 38400
38400 | Use Model
Use Model | | 54 RRX RRX 0.17 0 31110 0 1700 0.43 3 4 36000 36000 Use Model 54 SURFCH CR 51 0.82 811 950 97 110 0.03 3 4 36000 36000 Use Model 54 SURFCH CR 51 0.82 811 950 97 110 0.08 4 2 6000 6000 Use Model 54 STR CR 45 1.25 0 0 0 0.00 4 2 1.4400 1.4400 Use Model 54 STR STR 0.16 0 1530 0 230 0.06 4 2 1.4400 1.4400 Use Model 54 UBBDRY STR 0.05 0 1530 0 230 0.06 4 2 1.4400 1.4400 Use Count 54 UBBDRY STR 0.05 0 1.33 | 54 | CR 17 | STR | 1.47 | 5534 | 17670
25200 | 719 | 880 | 0.25 | 3 | 4 | 36000 | 36000 | Use Model | | 54 SURFCH CR 51 0.82 811 950 97 110 0.08 4 2 6000 6000 Use Model 54 STR CR 45 1.25 0 0 0 0.00 4 2 14400 14400 Use Model 54 STR STR 0.16 0 1530 0 230 0.05 4 2 14400 14400 Use Model 54 URBDRY STR 0.05 0 1530 0 230 0.05 4 2 14400 14400 Use Model 54 URBDRY STR 0.05 0 1530 0 230 0.06 4 2 14400 14400 Use Count 54 CR 47 CR 54 WEST 0.78 1629 3130 375 730 0.11 4 2 14400 14400 Use Count 54 CR 47 CR 54 WEST 0.78 1629 313 | 54 | RRX | RRX | 0.17 | 0 | 31110
22570 | 0 | 1700 | 0.43 | 3 | 4 | 36000 | 36000 | Use Model | | 54 1STAV URBDRY 0.16 0 1580 0 230 0.06 4 2 13200 13200 Use Model 54 STR STR 0.05 0 1580 0 230 0.05 4 2 14400 14400 Use Model 54 URBDRY STR 0.05 0 1580 0 230 0.06 4 2 14400 14400 Use Count 54 CR 645 CR 47 1.00 1877 3670 375 730 0.13 4 2 14400 14400 Use Count 54 CR 54 WEST 0.78 1629 31390 375 730 0.11 4 2 14400 14400 Use Count 54 CR 647 CR 54 WEST 0.78 1629 31390 375 730 0.11 4 2 14400 14400 Use Count 54 WIDCH CR 54 EAST 0.16 <td>54</td> <td>SURFCH</td> <td>CR 51</td> <td>0.82</td> <td>811</td> <td>950</td> <td>97</td> <td>110</td> <td>0.08</td> <td>4</td> <td>2</td> <td>6000</td> <td>6000</td> <td>Use Count</td> | 54 | SURFCH | CR 51 | 0.82 | 811 | 950 | 97 | 110 | 0.08 | 4 | 2 | 6000 | 6000 | Use Count | | 54 UBBDRV STR 0.05 0 1580 0 230 0.06 4 2 13200 13200 Use Model 54 CR 45 CR 47 7.00 1877 3670 375 730 0.13 4 2 14400 14400 Use Count 54 CR 47 CR 54 WEST 0.78 1629 3190 375 730 0.11 4 2 14400 14400 Use Count 54 CR 54 WEST WIDCH 0.20 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 WIDCH CR 54 EAST 0.16 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 WIDCH SRFCH 0.04 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH WIDCH SRFCH 0.04 0 | 54 | 1ST AV | URBDRY | 0.16 | 0 | 1530 | 0 | 230 | 0.06 | 4 | 2 | 13200 | 13200 | Use Model | | 54 CR 47 CR 54 WEST 0.78 1629 3190 375 730 0.11 4 2 14400 14400 Use Count 54 CR 54 WEST WIDCH 0.0 0 0 0.00 4 2 14400 14400 No Model No Count 54 WIDCH CR 54 EAST 0.16 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 CR 649 SRFCH 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 WIDCH SRFCH 0.04 0 0 0 0.00 4 2 14400 No Model No Count 54 SRFCH WIDCH 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH WIDCH 0.02 0 0 0 0.00 4 2 | 54 | URBDRY | STR | 0.05 | 0 | 1530
1530 | 0 | 230 | 0.06 | 4 | 2 | 13200 | 13200 | Use Model | | 54 WIDCH CR 54 EAST 0.16 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 CR 649 SRFCH 0.04 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH CR 49 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH WIDCH 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH WIDCH 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 CR 55 SH 34 1.82 23 30 5 10 0.00 4 2 14400 14400 No Model No Count 55 CR 124 CR 126 1.01 0 0 0 0.00 | 54 | CR 47 | CR 54 WEST | 0.78 | | 3670
3190 | 375 | 730 | 0.11 | 4 | 2 | 14400 | 14400 | Use Count | | 54 CR 49 SRFCH 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 WIDCH SRFCH CR 49 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRFCH CR 49 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 CR 55 SH 34 1.82 23 30 5 10 0.00 4 2 6000 6000 Use Count 55 CR 124 CR 126 1.01 0 0 0 0.00 8 2 6000 6000 Use Count 55 CR 124 CR 126 1.01 0 0 0 0.00 8 2 6000 6000 No Model No Count 1 1 0 0 0 0.00 8 2 6000 6000 <td>54</td> <td>WIDCH</td> <td>CR 54 EAST</td> <td>0.16</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0.00</td> <td>4</td> <td>2</td> <td>14400</td> <td>14400</td> <td>No Model No Count</td> | 54 | WIDCH | CR 54 EAST | 0.16 | | 0 | 0 | 0 | 0.00 | 4 | 2 | 14400 | 14400 | No Model No Count | | 54 SRECH CR 49 0.02 0 0 0 0.00 4 2 14400 14400 No Model No Count 54 SRECH WIDCH 0.02 0 0 0.00 4 2 14400 14400 No Model No Count 54 CR 55 SH 34 1.82 23 30 5 10 0.00 4 2 6000 6000 Use Count 55 CR 124 CR 126 1.01 0 0 0.00 8 2 6000 6000 No Model No Count 55 STR CR 54 0.52 108 13.0 23 30 0.01 4 2 6000 6000 No Model No Count 55 STR CR 4 0.52 108 13.0 23 30 0.01 4 2 6000 6000 Use Count 55 STR CR 4 1.00 63 3780 13 110 0.15 | 54
54 | | SRFCH
SRFCH | 0.04 | 0 | 0 | | | 0.00 | | 2 2 | | 14400
14400 | No Model No Count | | 54 CR 55 SH 34 1.82 23 30 5 10 0.00 4 2 6000 6000 No Model No Count 55 CR 124 CR 126 1.01 0 0 0 0.00 8 2 6000 6000 No Model No Count 55 STR CR 54 0.52 108 130 23 30 0.01 4 2 6000 6000 Use Count 55 CR 4 SH 52 4.02 80 90 15 20 0.01 7 2 6000 6000 Use Count 55 COLI CR 4 1.00 63 1780 13 110 0.15 7 2 6000 6000 Use Model 55 SH 52 STR 1.81 54 90 8 20 0.01 7 2 6000 6000 Use Model 55 STR CR 16 0.18 0 90 <td< td=""><td>54</td><td>SRFCH</td><td>CR 49</td><td>0.02</td><td></td><td>0</td><td>0</td><td></td><td>0.00</td><td>4</td><td>2</td><td>14400</td><td>14400</td><td>No Model No Count</td></td<> | 54 | SRFCH | CR 49 | 0.02 | | 0 | 0 | | 0.00 | 4 | 2 | 14400 | 14400 | No Model No Count | | 55 STR CR 54 0.52 108 130 23 30 0.01 4 2 6000 6000 Use Court 55 CR 4 SH 52 4.02 80 90 15 20 0.01 7 2 6000 6000 Use Model 55 COLI CR 4 1.00 63 1780 13 110 0.15 7 2 6000 6000 Use Model 55 SH 52 STR 1.81 54 90 8 20 0.01 7 2 6000 6000 Use Model 55 STR CR 16 0.18 0 90 0 20 0.01 7 2 6000 6000 Use Model 55 CR 20 END 0.98 216 920 136 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 90 920 | 54 | CR 55 | SH 34 | | 23 | 30 | 5 | 10 | 0.00 | 4 | 2 | 6000 | 6000 | Use Count | | 55 COLI CR 4 1.00 63 1780 13 110 0.15 7 2 6000 6000 Use Model 55 S1R CR 16 0.18 0 99 0 20 0.01 7 2 6000 6000 Use Model 55 STR CR 16 0.18 0 99 0 20 0.01 7 2 6000 6000 Use Model 55 CR 20 END 0.98 21 136 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 900 920 369 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 900 920 369 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 900 920 369< | 55 | STR | CR 54 | 0.52 | 108 | 130 | 23 | 30 | 0.01 | | 2 | 6000 | 6000 | Use Count | | 55 STR CR 16 0.18 0 90 0 20 0.01 7 2 6000 6000 Use Model 55 CR 20 END 0.98 216 920 136 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 900 920 369 100 0.08 7 2 6000 6000 Use Model 55 CR 36 CR 50 4.99 102 120 16 20 0.01 4 2 6000 6000 Use Count 55 CR 36 CR 40 1.99 42 50 0 0.00 4 2 6000 6000 Use Count 55 CR 36 STR 1.47 108 130 23 30 0.01 4 2 6000 6000 Use Count 55 SH 392 CR 74 3.02 653 920 1 | 55 | COLI | CR 4 | 1.00 | 63 | 90
1780 | 13 | 110 | 0.15 | | 2 | 6000 | 6000 | Use Model | | 55 CR 20 END 0.98 216 920 136 100 0.08 7 2 6000 6000 Use Model 55 CR 18 CR 20 1.00 900 920 369 100 0.08 7 2 6000 6000 Use Model 55 CR 40 CR 50 4.99 102 120 16 20 0.01 4 2 6000 6000 Use Count 55 CR 36 CR 40 1.99 42 50 0 0 0.00 4 2 6000 6000 Use Count 55 CR 50 STR 1.47 108 130 23 30 0.01 4 2 6000 6000 Use Count 55 SH 392 CR 74 3.02 653 220 141 200 0.03 2 2 14400 14400 Use Count | 55 | STR | CR 16 | 0.18 | 0 | 90
90 | 0 | 20 | 0.01 | 7 | 2 | 6000 | 6000 | Use Model | | 55 CR 40 CR 50 4.99 102 120 16 20 0.01 4 2 6000 6000 Use Count 55 CR 36 CR 40 1.99 42 50 0 0 0.00 4 2 6000 6000 Use Count 55 CR 50 STR 1.47 108 130 23 30 0.01 4 2 6000 6000 Use Count 55 SH 392 CR 74 3.02 653 920 141 200 0.03 2 2 14400 14400 Use Count | 55 | | END | 0.98 | 216 | 920
920 | 136
369 | | 0.08 | 7 7 | 2 | 6000 | 6000 | Use Model | | 55 CR 50 STR 1.47 108 130 23 30 0.01 4 2 6000 6000 Use Count 55 SH 392 CR 74 3.02 653 920 141 200 0.03 2 2 14400 14400 Use Count | 55 | CR 40 | CR 50 | 4.99 | 102 | 120
50 | 16 | 20 | 0.01 | | 2 | 6000 | 6000 | Use Count | | | | 00.50 | STR | | | 130 | | | | | 2 | 6000 | 6000 | Use Count | | | | | | | 653 | 920 | 1∆1 | | | 2 | 2 | | 14400 | Use Count | | 55 | RRX CL | SH 34 | 0.24 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 6000 | 6000 | No Model No Count | |--|--|---|--|---|---|--|--|--|---
---|---|---| | 55
55 | CR 54
CR 54.5 | CR 54.5
RRX | 0.51
0.01 | 255
241 | 290
280 | 48
22 | 50
30 | 0.02
0.02 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 55
55 | SH 34
CONNECTOR | BARR
CR 62 | 0.50
0.46 | 0
3176 | 0
8140 | 0
1112 | 0
2850 | 0.00
0.21 | 4 | 2 6000
2 19200 | 6000
19200 | No Model No Count
Use Count | | 55
55 | CR 60.5
CR 66 | END
SH 392 | 0.05 | 0
3401 | 0 | 0
1496 | 0
3710 | 0.00
0.22 | 4 4 | 2 14400
2 19200 | 14400
19200 | No Model No Count
Use Count | | 55 | 3RD AVE | 5TH AVE | 0.15 | 0 | 8800
0700 | 0 | 3600 | 0.23 | 4 4 | 2 19200 | 19200 | No Model No Count Derive | | 55
55 | CR 62.5
CR 62.7 | CR 62.7
CR 64 | 0.25
0.25 | 3949
2993 | 7670 | 1501
1048 | 3720
2690 | 0.25
0.20 | 4 | 2 19200
2 19200 | 19200
19200 | Use Count
Use Count | | 55
55 | CR 64
7TH AVE | 3RD AVE
CR 66 | 0.14
0.57 | 0
3528 | 8800
8740 | 0
1446 | 3600
3580 | 0.23
0.23 | 4 | 2 19200
2 19200 | 19200
19200 | No Model No Count Derive
Use Count | | 55
55 | 5TH AVE
CR 80 | 7TH AVE
END | 0.14
0.99 | 0 | 8800
0 | 0 | 3600
0 | 0.23 | 4
2 | 2 19200
2 6000 | 19200
6000 | No Model No Count Derive
No Model No Count | | 55
55 | CR 74
CR 78 | CR 78
SRFCH | 2.00
0.99 | 131
78 | 250
150 | 47
21 | 90
40 | 0.02
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 55
55 | SRFCH
CR 108 | CR 80
CR 112 | 0.01
2.01 | 78
0 | 120
0 | 21
0 | 30
0 | 0.00 | 2 8 | 2 14400
2 6000 | 14400
6000 | Use Count
No Model No Count | | 55
55 | CR 120
CR 122 | CR 122
CR 124 | 0.95 | 0
60 | 0
100 | 0
32 | 0
50 | 0.00
0.01 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 56
56 | RRX
CR 13 | RRX
RRX | 0.33
0.09 | 32
0 | 5250
5250 | 0 | 320
320 | 0.44
0.44 | 3 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 56 | RRX | CR 15 | 0.64
1.22 | 0 | 5250 | 0 | 320
0 | 0.44 | 3 4 | 2 6000 | 6000 | Use Model | | 56
57 | SH 34 BYPASS
CR 124 | CDS
CR 126 | 0.99 | 0 | 0 | Ö | Ö | 0.00 | 8 | 2 14400
2 6000 | 14400
6000 | No Model No Count
No Model No Count | | 57
57 | CR 50
CR 18 | CR 54.5
CR 20 | 2.30
0.50 | 60
183 | 70
260 | 11
44 | 10
60 | 0.01
0.02 | 4
7 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 57
57 | CR 18
CR 40 | CL KEENESBURG
CR 44 | 0.50
2.00 | 183
110 | 260
130 | 44
31 | 60
40 | 0.02
0.01 | 7 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 57
57 | GATE
CR 46 | CR 40
CR 50 | 1.48
2.00 | 91
70 | 100
80 | 40
12 | 50
10 | 0.01
0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 57
57 | CR 44
CR 88 | CR 46
SH 14 | 0.99
1.00 | 126
0 | 250
0 | 29
0 | 60
0 | 0.01 | 4 | 2 14400
2 6000 | 14400
6000 | Use Count
No Model No Count | | 57
57 | SH 392
CR 60.5 | CR 74
SH 392 | 3.02
3.48 | 154
100 | 290
120 | 32
23 | 60
30 | 0.02
0.01 | 2 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 57
57 | CR 76
CR 78 | CR 78
SRFCH | 1.00
0.74 | 31
0 | 60 | 11
0 | 20
0 | 0.01
0.00 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 57 | SRFCH | END | 0.26 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000 | 6000 | No Model No Count | | 57
57 | STR
STR | CR 108
STR | 3.78
2.58 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count | | 57
57 | SH 14
CR 108 | STR
END | 2.63
0.50 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 57
57 | SRFCH
STR | END
SRFCH | 1.11
2.33 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 57
58 | CR 126
WIDCH | STR
CR 49.5 | 1.73
0.89 | 0 | 0 | 0 | 0 | 0.00 | 8
4 | 2 6000
2 14400 | 6000
14400 | No Model No Count
No Model No Count | | 58
58 | SRFCH
WELD COUNTY | WIDCH
SRFCH | 0.06
0.02 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 14400
2 14400 | 14400
14400 | No Model No Count
No Model No Count | | 58
58 | CR 51
CR 49.5 | SH 37
CR 51 | 1.03
0.50 | 454
500 | 910 | 213
240 | 430
480 | 0.03
0.03 | 4 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 58
58 | WIDCH | CR 49.5
CR 89 | 0.01 | 0 | 0 | 0 | 0 | 0.00 | 4 8 | 2 14400 | 14400
1800 | No Model No Count | | 59 | BGN
STR | SH 34 | 1.29 | 0 | 570 | 0 | 30 | 0.02 | 4 | 2 1800
2 14400 | 14400 | No Model No Count
Use Model | | 59
59 | SH 52
CR 6 | CR 16.5
CR 10 | 2.50
1.99 | 1668
148 | 2570 | 367
35 | 70
50 | 0.09
0.02 | 7 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 59
59 | CR 2
CR 10 | CR 6
SH 52 | 2.09
1.02 | 58
340 | 80
670 | 14
65 | 20
130 | 0.01
0.02 | 7 7 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 59
59 | CR 20
CR 18 | LG
CR 20 | 1.00
0.83 | 0
1230 | 0
2420 | 0
713 | 0
1400 | 0.00 | 7 | 2 14400
2 14400 | 14400
14400 | No Model No Count
Use Count | | 59
59 | CL KENNESBURG
RRX | RRX
CR 398 | 0.02 | 0 | 2570
2570 | 0 | 70
70 | 0.09 | 7 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 59
59 | CL
CR 46 | END
CR 50 | 0.04
2.00 | 0
148 | 300 | 0
43 | 0
90 | 0.00 | 7 | 2 14400
2 14400 | 14400
14400 | No Model No Count
Use Count | | 59
59 | CR 50
CR 70 | STR
CR 72 | 0.61
1.10 | 0
354 | 170
620 | 0
188 | 10
330 | 0.01
0.05 | 4 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 59
59 | STRUCTUREBRIDG
CR 388 | STR
CR 60.5 | 1.38
2.01 | 938
494 | 1880
990 | 356
262 | 710
530 | 0.07
0.03 | 4 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 59 | CR 60.5 | STR | 0.40 | 1078 | 2160 | 388 | 780 | 0.08 | 4 4 | 2 14400 | 14400 | Use Count | | 59
59 | STRUCTUREBRIDG
SH 392 | SH 392
CR 70 | 1.70
1.01 | 636
212
177 | 370 | 235
87 | 470
150 | 0.04
0.03 | 2 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 59
59 | CR 74
CR 72 | CR 78
CR 74 | 2.00
1.01 | 421 | 740 | 39
206 | 60
360 | 0.01
0.06 | 2 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 59
59 | CR 78
STR | END
CR 120 | 0.99
2.74 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 59
59 | CR 108
CR 128 | STR
CR 130 | 3.34
1.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 60
60 | CR 15
CR 13 | CR 17
CR 15 | 1.00
0.98 | 76
68 | 4730
130 | 7
5 | 310
10 | 0.39
0.01 | 3 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 60
61 | SH 37
SH 34 | CR 55.5
CR 380 | 1.49
0.91 | 46
683 | 50
1410 | 17
389 | 20
800 | 0.00 | 4 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 61
61 | CR 6
BEG | SH 52
CR 6 | 3.00
0.79 | 83
0 | 120
0 | 16
0 | 20
0 | 0.01 | 7 7 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 61
61 | SH 52
CR 46 | CR 14
CR 50 | 1.00
2.01 | 38
67 | 50
80 | 5
25 | 10
30 | 0.00
0.01 | 7 4 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 61
61 | GATE
CR 50 | CR 46
SH 34 | 0.52
0.98 | 0
300 | 620 | 0
132 | 0
270 | 0.00
0.02 | 4 4 | 2 1800
2 14400 | 1800
14400 | No Model No Count
Use Count | | 61 | SH 392 | CR 74 | 2.71 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000 | 6000 | No Model No Count | | 61 | CR 380 | CR 388
STR | 0.49 | 466
466 | 960 | 266
266 | 550
550 | 0.03 | 4 | 2 14400
2 14400 | 14400 | Use Count
Use Count | | 61
61 | STR
CR 64 | STR
CR 68 | 0.37
1.99 | 466
150 | 960
170 | 266
62 | 550
70 | 0.03
0.01 | 4 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 61
61 | CR 62
STR | CR 64
SH 392 | 1.00
0.25 | 132
79 | 150
150 | 36
32 | 40
60 | 0.01
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count Use Count | | 61
61 | CR 68
CR 74 | STR
CR 78 | 0.06
2.00 | 0
141 | 150
250 | 0
41 | 60
70 | 0.01
0.02 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count Derive Use Count | | 61
61 | SH 14
CR 94 | CR 94
CR 96 | 2.01
1.00 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count | | 62
62 | CR 15
CR 43 | CL
CL GREELEY | 0.50
0.13 | 6222
226 | 17970
3120 | 560
36 | 1510
410 | 0.47
0.12 | 3 4 | 2 19200
2 13200 | 19200
13200 | Use Model
Use Model | | 62
62 | CR 45
CL GREELEY | CDS
CR 45 | 0.31
0.13 | 81 | 160
1200 | 16
32 | 30
150 | 0.01
0.05 | 4 4 | 2 13200
2 13200 | 13200
13200 | Use Count
Use Model | | 62
62 | URBDRY
CR 47 | CR 49
WIDCH | 0.80
0.16 | 200
252
252 | 520
520 | 66
66 | 140
140 | 0.02
0.02 | 4 4 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 62
62 | CDS
CL | CL
CR 47 | 0.16
0.32
0.02 | 520
520 | 1100 | 270
270 | 570
570 | 0.02
0.04
0.04 | 4 4 4 | 2 13200
2 13200 | 13200
13200 | Use
Count
Use Count | | | WIDCH
SH 37 | URBDRY | 0.02
0.05
1.78 | 252 | 520
110 | 66
21 | 140 | 0.04
0.02
0.01 | 4 | 2 13200
2 14400
2 6000 | 14400 | Use Count | | 62 | 5H 3/ | STR
CR 61 | 1.00 | 94
164 | 110
190 | 75 | 20
90 | 0.02 | 4 | 2 6000 | 6000
6000 | Use Count
Use Count | | 62
62
62 | CR 59 | | | 85 | 100 | 19
0 | 20
0 | 0.01
0.00 | 4
8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 62
62
62
62
62 | STR
CR 95 | CR 59
CR 97 | 0.22
1.00 | 0 | | | | 0.00 | | | | | | 62
62
62
62
62
63
63 | STR
CR 95
CR 124
SH 34 | CR 97
CR 128
CR 380 | 1.00
2.00
1.28 | 0
26 | 0
30 | 0
8 | 0
10 | 0.00 | 8
4 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 62
62
62
62
62
62
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2 | CR 97
CR 128
CR 380
CR 16.5
CR 8 | 1.00
2.00
1.28
0.48
3.00 | 0
26
612
34 | 0
30
1240
50 | 8
122
5 | 10
250
10 | 0.00
0.04
0.00 | | 2 6000
2 14400
2 6000 | 6000
6000
14400
6000 | Use Count Use Count Use Count | | 62
62
62
62
62
63
63
63
63
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2
SH 52 | CR 97
CR 128
CR 380
CR 16.5
CR 8
CR 14 | 1.00
2.00
1.28
0.48
3.00
1.00 | 0
26
612
34
80 | 0
30
1240
50
110 | 8
122
5
14 | 10
250
10
20 | 0.00
0.04
0.00
0.01 | 4 | 2 6000
2 14400
2 6000
2 6000 | 6000
14400
6000
6000 | Use Count Use Count Use Count Use Count | | 62
62
62
62
62
63
63
63
63
63
63
63
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2
SH 52
CR 8
CR 14 | CR 97
CR 128
CR 380
CR 16.5
CR 8
CR 14
SH 52
CR 16 | 1.00
2.00
1.28
0.48
3.00
1.00
2.00
1.01 | 0
26
612
34
80
90
71 | 0
30
1240
50
110
130 | 8
122
5
14
16
12 | 10
250
10
20
20
20 | 0.00
0.04
0.00
0.01
0.01
0.01 | 4
7
7
7
7
7 | 2 6000
2 14400
2 6000
2 6000
2 6000
2 6000
2 6000 | 6000
14400
6000
6000
6000
6000 | Use Count | | 62
62
62
62
62
63
63
63
63
63
63
63
63
63
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2
SH 52
CR 8
CR 14
CR 18
CONNECTOR | CR 97 CR 128 CR 380 CR 16.5 CR 8 CR 14 SH 52 CR 16 RRX CR 18 | 1.00
2.00
1.28
0.48
3.00
1.00
2.00
1.01
0.77 | 0
26
612
34
80
90 | 0
30
1240
50
110
130
100
120
220 | 8
122
5
14
16
12
31
43 | 10
250
10
20
20
20
20
40
60 | 0.00
0.04
0.00
0.01
0.01
0.01
0.01
0.02 | 4
7
7
7
7 | 2 6000
2 14400
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000 | 6000
14400
6000
6000
6000
6000
6000 | Use Count | | 62
62
62
62
62
63
63
63
63
63
63
63
63
63
63
63
63 | STR CR 95 CR 124 SH 34 CR 16 CR 2 SH 52 CR 8 CR 14 CR 18 CR 18 CONNECTOR RRX CR 88 | CR 97 CR 128 CR 380 CR 16.5 CR 8 CR 14 SH 52 CR 16 RRX CR 18 CR 18 CR 398 SH 14 | 1.00
2.00
1.28
0.48
3.00
1.00
2.00
1.01
0.77
0.42
0.03
1.00 | 0
26
612
34
80
90
71
91
161
91 | 220
120
0 | 8
122
5
14
16
12
31
43
31
0 | 10
250
10
20
20
20
40
60
40 | 0.00
0.04
0.00
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01 | 4
7
7
7
7
7
7
7
7
7
7
7
7 | 2 6000
2 14400
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000 | 6000
14400
6000
6000
6000
6000
6000
6000 | Use Count Ose Count Use Count Ose Count | | 62
62
62
62
62
63
63
63
63
63
63
63
63
63
63
63
63
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2
SH 52
CR 8
CR 14
CR 18
CONNECTOR
RRX
CR 88
CR 66
CR 74 | CR 97 CR 128 CR 380 CR 16.5 CR 8 CR 14.5 H 52 CR 16 RRX CR 18 CR 18 CR 398 SH 14 CR 68 CR 78 | 1.00
2.00
1.28
0.48
3.00
1.00
2.00
1.01
0.77
0.42
0.03
1.00
1.00 | 0
26
612
34
80
90
71
91
161
91
0
279 | 0
30
1240
50
110
130
120
220
120
0
320
0 | 8
122
5
14
16
12
31
43
31
0
123
0 | 10
250
10
20
20
20
20
40
60
40
0 | 0.00
0.04
0.00
0.01
0.01
0.01
0.02
0.02
0.01
0.00
0.00
0.00 | 4
7
7
7
7
7
7
7
7 | 2 6000
2 14400
2 6000
2 6000 | 6000
14400
6000
6000
6000
6000
6000
6000 | Use Count No Model No Count No Model No Count No Model No Count | | 62
62
62
62
62
63
63
63
63
63
63
63
63
63
63
63
63
63 | STR
CR 95
CR 124
SH 34
CR 16
CR 2
SH 52
CR 8
CR 14
CR 18
CONNECTOR
RRX
CR 88
CR 66 | CR 97 CR 128 CR 380 CR 16.5 CR 8 CR 14 SH 52 CR 16 RRX CR 18 398 SH 14 CR 68 | 1.00
2.00
1.28
0.48
3.00
2.00
1.01
0.77
0.42
0.03
1.00 | 0
26
612
34
80
90
71
91
161
91
0 | 220
120
0 | 8
122
5
14
16
12
31
43
31
0 | 10
250
10
20
20
20
40
60
40
0 | 0.00
0.04
0.00
0.01
0.01
0.01
0.01
0.02
0.01
0.02
0.01
0.09 | 4
7
7
7
7
7
7
7
7
7
7
7
7 | 2 6000
2 14400
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 6000
2 1800 | 6000
14400
6000
6000
6000
6000
6000
6000 | Use Count | | 64 | CR 29 | CR 29.3 | 0.26 | 0 | 19790 | 0 | 1840 | 0.37 | 3 | 2 | 26400 | 26400 | Use Model | |----------------|-----------------------------------|------------------------|----------------------|--------------|-----------------------------------|--------------|------------------|----------------------|-----------------------|-----------------------|------------------------|------------------------|--| | 64 | CR 27 | CR 29 | 1.01 | 2912 | 18140 | 670 | 1620 | 0.40 | 3 | 2 | 22800 | 22800 | Use Model | | 64
64 | RRX
CR 29.3 | CR 31
RRX | 0.42 | 3535
3535 | 21920
21760 | 813
813 | 1920
1910 | 0.42
0.41 | 3 | 2 | 26400
26400 | 26400
26400 | Use Model
Use Model | | 64
64 | RRX
URBDRY | STR
CR 49 | 0.73 | 792
56 | 520
340 | 253
12 | 100
20 | 0.02
0.03 | 4 | 2 | 12000
6000 | 12000
6000 | Use Model
Use Model | | 64 | CR 47 | SRFCH | 0.08 | 0 | 340 | 0 | 20 | 0.01 | 4 | 2 | 14400 | 14400 | Use Model | | 64
64 | SRFCH
CR 51 | URBDRY
SH 37 | 0.13
1.99 | 99
28 | 340
30 | 27
4 | 20
0 | 0.03 | 4 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Count | | 64
64 | CR 57
SRFCH | SRFCH
END | 2.50
0.35 | 140
12 | 160
10 | 48
0 | 50
0 | 0.01 | 4 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 65
65 | CR 14
CR 2 | CR 18
SRFCH | 2.00 | 25
62 | 40 | 2
12 | 20 | 0.00 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 65 | SRFCH | SH 52 | 2.09 | 487 | 960 | 168 | 330 | 0.03 | 7 | 2 | 14400 | 14400 | Use Count | | 65
65 | CR 50
SRFCH | CR 52.7
END | 1.20
0.54 | 34
0 | 40
190 | 10
0 | 10
40 | 0.00 | 4 2 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count Derived | | 65
65 | CR 74
WIDCH | WIDCH
SRFCH | 2.77
0.24 | 102 | 190
190 | 19
0 | 40
40 | 0.02 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count Derived | | 65 | SH 14 | CR 92 | 1.00 | 0
99 | 0 | 0 | 0 | 0.00 | 2 | 2 | 6000 | 6000 | No Model No Count | | 66
66 | STR
CR 35 | SH 37
CR 37 | 2.76
0.75 | 802 | 9210 | 25
96 | 30
880 | 0.01
0.26 | 3 | 2 | 6000
18000 | 6000
18000 | Use Count
Use Model | | 66
66 | CR 25.75
CR 23.75 | CL GREELEY
CR 25.75 | 2.01
1.09 | 186
243 | 2730
1450 | 39
90 | 140
90 | 0.10
0.05 | 3 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 66
66 | CL
URBDRY | CR 35
CR 45 | 0.67
1.51 | 1689 | 3600
1170 | 253
262 | 220
150 | 0.13
0.04 | 3
4 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 66 | RRX | URBDRY | 1.48 | 504 | 4200 | 171 | 810 | 0.16 | 4 | 2 | 13200 | 13200 | Use Model | | 66
66 | CR 37
SH 85 | SH 85
RRX | 1.00
0.02 | 834
0 | 7830 | 158
0 | 850
1080 | 0.16
0.30 | 3
4 | 2 | 18000
13200 | 18000
13200 | Use Model
Use Model | | 66
66 | CR 45
CR 47 | WIDCH
STR | 0.73
0.90 | 397
101 | 630
120 | 202
26 | 50
30 | 0.02
0.01 | 4 | 2 | 14400
6000 | 14400
6000 | Use Model
Use Count | | 66
66 | CR 47
WIDCH | WIDCH
WIDCH | 0.15
0.12 | 102 | 220 | 24
0 | 50
30 | 0.01
0.02 | 4 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Model | | 66 | WIDCH | CR 47 | 0.15 | 0 | 490 | 0 | 30 | 0.02 | 4 | 2 | 13200 | 13200 | Use Model | | 66
66 | WIDCH
SH 37 | SRFCH
CR 57 | 0.15
1.00 | 93 | 220
110 | 24
33 | 50
40 | 0.01
0.01 | 4 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 66
66 | CR 59
BGN | CR 63
CR 59 | 1.98
0.25 | 131 | 150
0 | 41
0 | 50
0 | 0.01 | 4 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 66 | CR 85 | GATE | 0.40 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 67
67 | CR 124
CR 16 | STR
END | 2.87
2.00
3.29 | 33
26 | 40 | 15
7 |
20
10 | 0.00 | 8
7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 67
67 | CR 4.75
CR 2 | SH 52
CR 4 | 3.29
1.00 | 48
16 | 70
20 | 7 3 | 10
0 | 0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 67
67 | CR 4
SH 52 | CR 4.75
CR 16 | 0.77
1.99 | 22
98 | 30
140 | 3
48 | 0
70 | 0.00
0.01 | 7 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 67 | CR 16 | FND | 0.34 | 26 | 40 | 7 | 10 | 0.00 | 7 | 2 | 6000 | 6000 | Use Count | | 67
67 | CR 50
CR 68 | CR 380
SH 392 | 0.36
2.08 | 49
142 | 200 | 11
80 | 10
110 | 0.01
0.01 | 2 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 67
67 | CR 120
N GRSSLAND BDRY | N GRASSLAND
CR 124 | 0.97
1.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 67
68 | STR
SRFCH | CR 132
CR 83 | 1.13
5.69 | 33
586 | 50 | 16
340 | 30
540 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 68 | CR 63 | SRFCH | 0.50 | 39 | 2930 | 14 | 1520 | 0.10 | 4 | 2 | 14400 | 14400 | Use Count | | 68
68 | CR 392
SH 392 | CR 68
STR | 0.38 | 1421
0 | 2930
0 | 739
0 | 1520
0 | 0.10 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count | | 68
68 | CR 61
STR | CR 61.4
CR 61 | 0.48
0.28 | 1486
1421 | 3060
2930 | 817
739 | 1680
1520 | 0.11
0.10 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 68 | CR 61.6 | STR | 0.26 | 1502 | 3090 | 886 | 1830 | 0.11 | 4 | 2 | 14400 | 14400 | Use Count | | 68
68 | STR
CR 61.4 | CR 61.6
STR | 0.03
0.15 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 14400
14400 | 14400
14400 | No Model No Count
No Model No Count | | 68
68 | STR
CR 69 | CR 63
SRFCH | 0.06
1.34 | 1502
804 | 3090
1570 | 886
458 | 1830
900 | 0.11
0.05 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 68
68 | CR 67
SRFCH | WIDCH
CR 67 | 0.28
1.48 | 833
1270 | 1630 | 475
749 | 930
1540 | 0.06 | 4
4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 68 | WIDCH | CR 69 | 0.74 | 833 | 1630 | 475 | 930 | 0.06 | 4 | 2 | 14400 | 14400 | Use Count | | 68
68 | CR 89
STR | CR 93
CR 89 | 2.02
2.80 | 31
137 | 50
230 | 11
59 | 20
100 | 0.00
0.02 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 68
68 | CR 83
CR 93 | STR
CR 97 | 0.18
2.12 | 0 | 230
0 | 0 | 100 | 0.02 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count Derived
No Model No Count | | 69
69 | CR 124
CR 16 | CR 130
CR 20 | 2.99
1.99 | 0
48 | 0 | 0 | 0
10 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 69 | SH 52 | CR 16 | 1.99 | 105 | 150 | 37 | 50 | 0.01 | 7 | 2 | 6000 | 6000 | Use Count | | 69
69 | STR
SH 34 | CR 380
STR | 0.58
0.72 | 490
490 | 980
980 | 147
147 | 300
300 | 0.03 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 69
69 | CR 50
END | GATE
SH 14 | 0.86
1.04 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 14400
6000 | 14400
6000 | No Model No Count
No Model No Count | | 69 | CR 68 | SH 392 | 3.02 | 22 | 40 | 10 | 20 | 0.00 | 2 | 2 | 6000 | 6000 | Use Count | | 69
69 | CR 80
SRFCH | END
CR 80 | 0.52
2.68 | 0
111 | 190 | 0
46 | 80 | 0.00
0.02 | 2 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 69
69 | BGN
CR 74 | CR 74
SRFCH | 0.34 | 79
111 | 110
160 | 57
46 | 80
70 | 0.00
0.01 | 2 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 69
69 | CR 96
SH 14 | CR 104
CR 96 | 3.98
3.01 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 69 | CR 114 | STR | 1.15 | 0 | ,
0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 69
69 | CR 110
STR | CR 114
CR 120 | 2.01
1.86 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 69.25
70 | CR 74
RRX | SH 392
CR 23 | 0.23
0.72 | 299
0 | 410
12210 | 90
0 | 120
1140 | 0.01
0.51 | 2 | 2 | 14400
12000 | 14400
12000 | Use Count
Use Model | | 70
70 | CR 19
CR 21 | CR 21
CL SEVERANCE | 0.99
0.07 | 652
0 | 14390
12210 | 46
0 | 1180
1140 | 0.55
0.51 | 1 | 2 | 13200
12000 | 13200
12000 | Use Model
Use Model | | 70 | STR | STR | 1.40 | 47 | 80 | 10 | 20 | 0.01 | 2 | 2 | 6000 | 6000 | Use Count | | 70
70 | STR
CR 27 | CR 37
STR | 0.63
4.41 | 98
37 | 2350 | 19
9 | 80
100 | 0.12
0.20 | 1 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 70
70 | CR 25
CL | CR 27
SRFCH | 1.10
0.43 | 62
443 | 4010
5650 | 19
58 | 190
280 | 0.33
0.21 | 1 1 | 2 | 6000
13200 | 6000
13200 | Use Model
Use Model | | 70
70 | SRFCH
RRX | CR 25
CR 43 | 0.50 | 0
110 | 5650
190 | 0 23 | 280
40 | 0.47 | 1 2 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Count | | 70 | CR 37 | SH 85 | 0.70 | 159
0 | 1910 | 25 | 130 | 0.07 | 1 | 2 | 14400 | 14400 | Use Model | | 70
70 | SH 85
STR | RRX
STR | 0.02
1.55 | 160 | 680
290
140 | 0
45 | 50
80 | 0.06
0.02 | 2 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Count | | 70
70 | STR
STR | STR
STR | 0.03
0.20 | 81
81 | 140
140 | 15
15 | 30
30 | 0.01
0.01 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 70
70 | CR 43
STR | STR
STR | 0.11
0.11 | 81
81 | 140
140 | 15
15 | 30
30 | 0.01
0.01 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 70 | STR | STR | 0.07 | 81 | 140 | 15 | 30 | 0.01 | 2 | 2 | 6000 | 6000 | Use Count | | 70
70 | CR 55
CR 53 | CR 57
END | 1.00
0.46 | 88
63 | 150
120 | 33
9 | 60
20 | 0.01
0.01 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 70
70 | CR 53
STR | CR 53
STR | 1.01
0.36 | 66
34 | 120
60 | 26
9 | 50
20 | 0.01
0.01 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 70
70 | STR
END | CR 51
CR 55 | 0.14
0.23 | 34
0 | 60 | 9 | 20
0 | 0.01
0.00 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 70 | CR 59 | CR 61 | 1.00 | 40 | 70 | 13 | 20 | 0.01 | 2 | 2 | 6000 | 6000 | Use Count | | 70
70 | CR 57
CR 61 | CR 59
CR 61.4 | 1.00
0.47 | 97
28 | 50
50 | 39
4 | 70
10 | 0.01
0.01 | 2 | 2 | 6000
1800 | 6000
1800 | Use Count
Use Count | | 70
70 | BGN
CR 85 | CR 83
END | 0.48
0.74 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | 71
71 | CR 14
CR 6 | CR 18
CR 10 | 2.00
2.00 | 47
0 | 70 | 8
0 | 10
0 | 0.00
0.01
0.00 | 7 7 | 2 | 6000 | 6000
6000 | Use Count No Model No Count | | 71 | BGN | CR 6 | 0.36 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 6000 | 6000 | No Model No Count | | 71
71 | CR 18
N GRASSLAND | END
SH 14 | 0.20
2.00 | 0 | 70 | 0 | 0
50 | 0.00 | 7 | 2 | 1800
6000 | 1800
6000 | No Model No Count No Model No Count Derived | | 71
71 | CR 80 | N GRASSLAND | 3.03
2.00 | 42
53 | 70 | 26
29 | 50
50 | 0.01
0.01 | 2 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | | | CR SU | | | | | | | | | | | . OSC COUNT | | 71 | SH 392
CR 130 | CR 80
CR 140 | 4.99 | 80 | 130 | 37 | 60 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 71
72
72 | SH 392
CR 130
STR
SH 257 | CR 140
CR 19
STR | 4.99
0.90
0.09 | 80
0
0 | 130
5790
6180 | 37
0
0 | 60
290
310 | 0.01
0.22
0.23 | 8
1
1 | 2 2 2 | 6000
13200
13200 | 6000
13200
13200 | Use Model
Use Model | | 71
72 | SH 392
CR 130
STR | CR 140
CR 19 | 4.99
0.90 | 80
0 | 130
5790
6180
130
290 | 37
0 | 60
290 | 0.01
0.22 | 8
1
1
2
1 | 2
2
2
2
2 | 6000
13200 | 6000
13200 | Use Model | | 72 | CR 25 | CR 27 | 1.08 | 68 | 200 | 10 | 30 | 0.02 | 1 | 2 6000 | 6000 | Use Count | |----------------|------------------------------|--------------------------------|------------------------------|----------------------|----------------|---------------|-----------------|------------------------------|--------|-------------------------------|-------------------------|---| | 72
72 | SEVERANCE CL
CR 27 | CR 25
CR 29 | 0.15
1.00 | 0
59 | 0
170 | 9 | 0
30 | 0.00
0.01 | 1 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 72
72 | CR 31
CR 33 | CR 33
CR 35 | 1.02
1.01 | 71
59 | 210
170 | 19
8 | 60
20 | 0.02
0.01 | 1 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 72
72 | CR 41
RRX | STR
CR 41 | 0.95
1.42 | 39
0 | 70
0 | 5
0 | 10
0 | 0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 72
72 | CR 37
SH 85 | SH 85
RRX | 0.55
0.02 | 82
0 | 150
0 | 11
0 | 20
0 | 0.01
0.00 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 72
72 | CR 45
STR | CR 47
CR 43 | 1.01
0.05 | 57
39 | 110
70 | 11
5 | 20
10 | 0.01
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 72
72 | CR 47
STR | STR
STR | 0.59
0.14 | 77
77 | 150
150 | 0 | 0 | 0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 72
72 | CR 55
STR | CR 59
CR 51 | 1.99
0.29 | 111
50 | 230 | 0 | 0
20 | 0.02
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 72
73 | BGN
CR 16 | CR 55
RRX | 0.49
4.51 | 0
514 | 0 | 0
189 | 0
370 | 0.00
0.04 | 2 7 | 2
6000
2 14400 | 6000
14400 | No Model No Count
Use Count | | 73
73 | ADAMS COLI
SH 52 | CR 8
CR 16 | 3.00
2.00 | 0 534 | 0 | 0
182 | 0
360 | 0.00
0.04 | 7 7 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Count | | 73
73 | CR 8
CR 73 | SH 52
CR 24.4 | 2.00
2.00
0.05 | 37
0 | 50 | 5
0 | 10
0 | 0.00 | 7 7 | 2 6000
2 14400 | 6000
14400 | Use Count No Model No Count | | 73
73 | RRX
CR 104 | SERVICE RD
CR 110 | 0.07
3.00 | 0 | ŏ | 0 | 0 | 0.00
0.00 | 7 | 2 14400
2 6000 | 14400
14400
6000 | No Model No Count No Model No Count No Model No Count | | 73 | CR 102 | CR 104 | 1.08 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 73
74 | CR 120
CR 15 | WINDSOR CL | 0.28
0.79 | 0
11220 | 22740 | 0
1010 | 0
1800 | 0.00
0.59 | 1 | 2 6000
2 19200 | 6000
19200 | No Model No Count
Use Model | | 74
74 | STR
CL SEVERANCE | CR 19
STR | 0.47
0.41 | 0
13628 | 21980
22250 | 0
1635 | 1690
1710 | 0.61
0.62 | 1 | 2 18000
2 18000 | 18000
18000 | Use Model
Use Model | | 74
74 | CL SEVERANCE
CL SEVERANCE | CL SEVERANCE
CL SEVERANCE | 0.48
0.23 | 7963
0 | 12810
12810 | 717
0 | 970
970 | 0.36
0.44 | 1 | 2 18000
2 14400 | 18000
14400 | Use Model
Use Model | | 74
74 | SRFCH
CR 49 | CR 79
CR 51 | 4.37
0.94 | 0
1282 | 30
1780 | 0
256 | 0
350 | 0.00
0.06 | 2 | 2 6000
2 14400 | 6000
14400 | Use Model
Use Count | | 74
74 | CR 29
CR 25 | CR 31
CR 27 | 1.01
1.01 | 3416
3351 | 5970
5970 | 615
335 | 420
420 | 0.16
0.16 | 1 | 2 19200
2 19200 | 19200
19200 | Use Model
Use Model | | 74
74 | CR 27
CR 31 | CR 29
CR 33 | 1.07
1.01 | 3096
4053 | 5970
12530 | 557
730 | 420
770 | 0.17
0.33 | 1 | 2 18000
2 19200 | 18000
19200 | Use Model
Use Model | | 74
74 | CR 41
CR 39 | STR
CR 41 | 0.98
1.00 | 1936
2250 | 2680
3120 | 407
405 | 560
560 | 0.09
0.11 | 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 74
74 | CR 45
CR 43 | CR 47
CR 45 | 1.01
1.00 | 1733
1650 | 2400
2290 | 399
380 | 550
530 | 0.08
0.08 | 2 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 74
74 | STR
CR 47 | CR 43
CR 49 | 1.00
0.02
1.00 | 1936
1424 | 2680
1970 | 407
271 | 560
380 | 0.09
0.07 | 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 74
74 | CR 61
CR 55 | CR 65
CR 57 | 1.98
1.00 | 423
989 | 590
1370 | 140
277 | 190
380 | 0.02
0.05 | 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 74
74 | CR 53
STR | CR 55
CR 53 | 1.00 | 856
1094 | 1190
1520 | 223
263 | 310
360 | 0.04
0.05 | 2 2 | 2 14400
2 14400 | 14400
14400 | Use Count
Use Count | | 74
74
74 | CR 51
CR 51 | STR
CR 51 | 0.12
0.02 | 1094
1094
1094 | 1520
1520 | 263
263 | 360
360 | 0.05
0.05 | 2 2 | 2 14400
2 14400
2 14400 | 14400
14400
14400 | Use Count
Use Count | | 74
74
74 | CR 59
CR 57 | CR 61
CR 59 | 1.00
1.00 | 788
890 | 1090 | 276
276 | 380
380 | 0.04
0.04 | 2 | 2 14400
2 14400
2 14400 | 14400
14400
14400 | Use Count
Use Count | | 74
74 | STR
CR 65 | SH 392 | 0.41
0.71 | 0 | 80 | 0 | 0 | 0.00 | 2 | 2 14400 | 14400
14400 | Use Model
Use Model | | 74
74
74 | WIDCH | STR
CR 69
CR 69 | 0.71
0.95
0.24 | 0 0 | 0 | 0 | 0 | 0.00
0.00
0.00 | 2 | 2 14400
2 14400 | 14400 | No Model No Count | | 74 | BARR
WIDCH | BARR | 0.24
0.56
0.37 | 0 | 80
80 | 0 | 0 | 0.00 | 2 | 2 14400
2 14400 | 14400
14400 | Use Model Use Model Use Model | | 74
74 | WIDCH
CR 69 | SRFCH
SRFCH | 0.16 | 0 | 30 | 0 | 0 | 0.00 | 2 | 2 14400
2 6000 | 14400
6000 | Use Model | | 74
74 | CR 69
SH 392 | SH 392
BARR | 0.03
0.05 | 0 | 80
80 | 0 | 0 | 0.00 | 2 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 74
74 | SRFCH
CR 69.25 | CR 69.25
WIDCH | 0.08
0.04 | 0
767 | 30
1120 | 0
368 | 0
540 | 0.00
0.04 | 2 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Count | | 74
74 | CR 69
CR 101 | SH 392
CR 109 | 0.18
4.04 | 0 | 0
30 | 0 | 0 | 0.00 | 2
8 | 2 14400
2 6000 | 14400
6000 | No Model No Count
Use Model | | 74
74 | CR 79
CR 97 | CR 93
CR 101 | 6.96
2.05 | 30
0 | 30
30 | 7
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 74
74 | CR 93
STR | CR 97
CR 131 | 2.00
6.25 | 0 | 30
0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | Use Model
No Model No Count | | 74
74 | MORGAN CR
CR 149 | STR
END | 0.54
0.22 | 0 | 0
0 | 0 | 0 | 0.00 | 8 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 75
75 | CR 122
CR 8 | CR 132
SH 52 | 5.03
2.01 | 0
24 | 0
40 | 0
3 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 75
75 | CR 100
CR 120 | CR 102
CR 122 | 1.00
1.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 76
76 | CR 13
CL WINDSOR | CL WINDSOR
SH 257 | 0.45
0.79 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | 76
76 | CR 129
STR | SH 52
CR 51 | 2.00
1.80 | 0
78 | 0
140 | 0
20 | 0
40 | 0.00
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 76
76 | CR 35
CR 29 | CL
STR | 1.03
1.51 | 1720
72 | 5830
180 | 310
12 | 1050
30 | 0.20
0.02 | 1 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 76
76 | STR
CR 23 | CR 27
STR | 0.81 | 146
146 | 840
840 | 20
20 | 40
40 | 0.07
0.07 | 1 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 76
76 | CR 27
STR | CR 29
CR 33 | 1.02 | 202
157 | 840 | 42
33 | 40
80 | 0.03
0.03 | 1 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 76
76 | CR 33
CR 41 | CR 35
STR | 1.00
1.13 | 948
157 | 3210
260 | 209
52 | 710
90 | 0.11
0.02 | 1 2 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 76
76
76 | CR 39
RRX | SRFCH
CR 39 | 0.17
0.95 | 0 | 330 | 0 | 110
0 | 0.02
0.01
0.00 | 2 | 2 14400
2 13200 | 14400
13200 | No Model No Count Derived
No Model No Count | | 76
76
76 | SRFCH
SRFCH | SRFCH
CR 41 | 0.58
0.25 | Ō | 330 | 0
0
64 | 110
110 | 0.00
0.01
0.03 | 2 | 2 13200
2 14400
2 6000 | 14400 | No Model No Count Derived Use Count | | 76 | STR | STR | 2.04
3.99 | 194
103 | 190
130 | 16
9 | 30
20 | 0.02 | 2 | 2 6000 | 6000
6000 | Use Count | | 76
76 | CR 51
CR 103 | CR 59
CR 105 | 1.01
0.93 | 72
0 | 0 | Õ | 0 | 0.01
0.00 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count No Model No Count No Model No Count | | 76
76 | CR 85
SRFCH | CR 87
CR 127 | 3.33 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count | | 76
76 | CR 119
SH 52 | SRFCH
CR 139 | 0.69
2.64 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 76
76 | CR 149
SH 71 | SH 71
CR 157 | 3.02
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 77
77 | CR 124
SH 14 | CR 126
STR | 0.93
1.83 | 919 | 2770
2770 | 243
505 | 30
30 | 0.10
0.07 | 8 8 | 2 14400
2 19200 | 14400
19200 | Use Model
Use Model | | 77
77 | CR 16
SH 52 | CR 18
CR 16 | 1.00
2.00 | 0
101 | 0
230 | 0
39 | 90 | 0.00
0.01 | 8 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Count | | 77
77 | STR
STR | CR 110
CR 100 | 1.63
3.15 | 650
919 | 2770
2770 | 286
487 | 30
30 | 0.10
0.07 | 8 | 2 14400
2 19200 | 14400
19200 | Use Model
Use Model | | 77
77 | STR
CR 100 | CR 106
STR | 1.97
1.03 | 901
901 | 2770
2770 | 405
405 | 30
30 | 0.10
0.10 | 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 106
CR 116 | STR
CR 118 | 0.45
1.00 | 746
644 | 2770
2770 | 336
283 | 30
30 | 0.10
0.10 | 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 110
CR 114 | CR 114
CR 116 | 2.00
1.00 | 862
901 | 2770
2770 | 379
396 | 30
30 | 0.10
0.10 | 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 120
CR 118 | CR 122
CR 120 | 1.03
1.00 | 614
876 | 2770
2770 | 332
394 | 30
30 | 0.10
0.10 | 8 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 122
CR 132 | CR 124
CR 136 | 1.01
1.89 | 671
714 | 2770
2770 | 282
471 | 30
30 | 0.10
0.10
0.10 | 8 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 128
CR 126 | CR 132
CR 128 | 2.01
1.01 | 388
736 | 2770
2770 | 221
478 | 30
30 | 0.10
0.10
0.10 | 8 8 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 77
77 | CR 126
CR 124 | CR 126
CR 126 | 0.06 | 0 | 2770 | 0
0 | 30
0 | 0.10 | 8 8 | 2 14400
2 14400 | 14400
14400 | Use Model No Model No Count | | 77
77
78 | CR 77
STR | CR 136
SH 257 | 0.08
1.25 | 0
106 | 0 | 0
23 | 0
70 | 0.00
0.00
0.03 | 8 | 2 14400
2 14400
2 6000 | 14400
14400
6000 | No Model No Count Use Count | | 78
78 | CR 13
SH 257 | STR | 0.69 | 67 | 200 | 12 | 40 | 0.02 | 1 1 | 2 6000 | 6000 | Use Count | | | | CR 21 | 2.07 | 78 | 210 | 11 | 30 | 0.02 | + + | 2
6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 78
78 | CR 35 | SH 85 | 0.70 | 0 | 0 | 0 | 0 | 0.00 | 1 | | | | | 78 | | SH 85
CR 31
CR 27
STR | 0.70
1.01
2.04
0.51 | 51
132
140 | 140
320 | 3
33
45 | 10
80
110 | 0.00
0.01
0.03
0.03 | 1 1 | 2 6000
2 6000
2 6000 | 6000
6000
6000 | Use Count Use Count Use Count Use Count | | 78 | CR 41 | CR 43 | 0.99 | 52 | 90 | 17 | 30 | 0.01 | 2 | 2 6000 | 6000 | Use Count | |----------|---------------------|---------------------|----------------------|------------|-------------|-----------|------------|----------------------|-----|--------------------|----------------|---| | 78
78 | CR 39
RRX | CR 41
CR 39 | 1.00
1.48 | 69
0 | 120 | 17
0 | 30
0 | 0.01
0.00 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 78 | SH 85 | RRX | 0.02 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000 | 6000 | No Model No Count | | 78
78 | STR
CR 43 | CR 45
STR | 0.51
0.50 | 89
89 | 160
160 | 13
13 | 20
20 | 0.01
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 78
78 | CR 45
CR 55 | END
CR 65 | 0.52
4.94 | 0
95 | 0
180 | 0
21 | 0
40 | 0.00
0.02 | 2 | 2 1800
2 6000 | 1800
6000 | No Model No Count
Use Count | | 78
78 | CR 101
CR 121 | CR 109
CR 123 | 4.04
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 78
78 | CR 127
CR 143 | CR 129
CR 149 | 1.00
3.00 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count | | 78 | CR 139 | CR 143 | 1.99 | 0 | Ö | 0 | 0 | 0.00 | 8 8 | 2 6000 | 6000 | No Model No Count | | 78
78 | CR 153
CR 149 | SH 71
CR 153 | 1.01
2.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 78
79 | SH 71
SH 52 | CR 157
CR 18 | 1.01
3.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 79
79 | CR 84
CR 74 | SH 14
CR 84 | 3.03
5.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 79
79 | GATE
SRECH | CR 74
CR 114 | 1.07
0.73 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 79
79 | CR 120
CR 132 | CR 122
CR 136 | 1.01
1.98 | 0 | Ö
Ö | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 79 | CR 136 | CR 140 | 2.28 | 1080 | 2510 | 740 | 1720 | 0.09 | 8 | 2 14400 | 14400 | Use Count | | 80
80 | STR
CR 15 | CR 23
SH 257 | 1.00
0.99 | 107
994 | 300
3700 | 28
89 | 80
330 | 0.03
0.13 | 1 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 80
80 | CL TIMNATH
CR 13 | CR 15
CL TIMNATH | 0.46
0.46 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 13200
2 13200 | 13200
13200 | No Model No Count
No Model No Count | | 80
80 | CR 19
CR 129 | STR
SH 52 | 1.00
2.01 | 77
0 | 220 | 20
0 | 60
0 | 0.02
0.00 | 1 8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 80
80 | STR
RRX | CR 85
SRECH | 5.09
0.31 | 50
149 | 80 | 16
25 | 20
40 | 0.01
0.01 | 8 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 80 | CR 29 | CR 31 | 1.01 | 103 | 240 | 52 | 120 | 0.02 | 1 | 2 6000 | 6000 | Use Count | | 80
80 | CL
STR | STR
CR 29 | 1.91
0.16 | 199 | 500 | 48
48 | 120
120 | 0.04
0.04 | 1 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 80
80 | CR 35
SH 85 | SH 85
RRX | 0.42
0.01 | 77
149 | 150
210 | 0
25 | 0
40 | 0.01
0.01 | 2 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 80
80 | CR 41
CR 39 | CR 43
STR | 0.98
0.15 | 42
0 | 70
1330 | 13
0 | 20
80 | 0.01
0.11 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Model | | 80
80 | CR 37
SRFCH | STR
STR | 0.13
0.81
0.24 | 0
149 | 0 | 0
25 | 0
40 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 80 | STR | CR 37 | 0.04 | 149 | 250 | 25 | 40 | 0.02 | 2 | 2 6000 | 6000 | Use Count | | 80
80 | STR
STR | CR 39
CR 41 | 0.43
0.85 | 72 | 130 | 0
15 | 30 | 0.00
0.01 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 80
80 | CR 43
CR 53 | CR 45
CR 55 | 1.00
0.99 | 40
174 | 80
240 | 6
96 | 10
130 | 0.01
0.01 | 2 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 80
80 | CR 51
CR 69 | CR 55
CR 71 | 1.00
1.01 | 219
18 | 300
40 | 107
0 | 150
0 | 0.01
0.00 | 2 | 2 14400
2 6000 | 14400
6000 | Use Count
Use Count | | 80
80 | CR 71
STR | STR
SH 392 | 1.15
0.65 | 21 | 40 | 0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count Derived | | 80 | SH 392 | STR | 0.16 | 0 | 80 | 0 | 20 | 0.01 | 2 8 | 2 6000 | 6000 | No Model No Count Derived | | 80
80 | CR 93
CR 85 | CR 105
STR | 6.03
3.12 | 0
106 | 170 | 0
73 | 120 | 0.00
0.01 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 80
80 | STR
CR 115 | CR 93
CR 123 | 0.85
4.01 | 0 | 170
0 | 0 | 120
0 | 0.01
0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count Derived
No Model No Count | | 80
80 | CR 105
SH 52 | CR 115
CR 135 | 5.04
0.60 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 80
81 | CR 149
CR 16 | CR 151
CR 18 | 1.00
0.98 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 81
81 | CR 2
SH 52 | SH 52
CR 16 | 5.00
2.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000
6000 | No Model No Count | | 81 | CR 84 | CR 86 | 1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000 | No Model No Count
No Model No Count | | 81
81 | SYSCH
SRFCH | CR 84
SRFCH | 0.35
0.50 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 81
81 | SH 14
CR 92 | CR 92
SRFCH | 1.01
0.50 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 81
81 | GATE
CR 132 | CR 120
CR 134 | 1.14
0.98 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 81
82 | CR 136
CR 131 | CR 140
SH 52 | 1.99
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 82 | SH 14 | CR 51 | 0.74 | 509 | 670 | 183 | 240 | 0.02 | 2 | 2 19200 | 19200 | Use Count | | 82
82 | BGN
CR 79 | SH 392
SRFCH | 0.30
0.38 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 82
82 | CR 127
CR 139 | CR 129
CR 147 | 1.00
4.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 82
82 | SH 52
CR 153 | CR 139
SH 71 | 2.58
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 82
82 | CR 147
SH 71 | CR 149
CR 157 | 1.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 83 | CR 120 | CR 126 | 3.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 83
83 | CR 6
BGN | CR 10
CR 4 | 0.46 | Ŏ | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 83
83 | CR 4
SH 52 | CR 6
CR 14 | 1.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 83
83 | CR 10
CR 68 | SH 52
CR 74 | 1.00
2.98 | 0
30 | 0
50 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 83
83 | CR 80
SH 14 | CR 86
STR | 2.99
4.18 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count No Model No Count | | 83
83 | CR 100
STR | CR 106
CR 100 | 3.02 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count No Model No Count | | 83 | CR 126 | CR 390 | 0.80
3.93
1.99 | 0 | 0 | 0 | Ö | 0.00 | 8 | 2 6000
2 6000 | 6000 | No Model No Count | | 83
84 | CR 136
STR | CR 140
STR | 2.05 | 0
69 | 230 | 0
7 | 0
20 | 0.00
0.02 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count Use Count | | 84
84 | CR 15
CR 13 | STR
STR | 2.59
0.57 | 68
867 | 200
3230 | 10
156 | 30
580 | 0.02
0.11 | 1 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 84
84 | STR
STR | CR 15
STR | 0.36
0.98 | 0
113 | 3230
380 | 0
10 | 580
30 | 0.11
0.03 | 1 | 2 14400
2 6000 | 14400
6000 | No Model No Count Derived Use Count | | 84
84 | CR 131
SH 392 | SH 52
CR 83 | 1.00
3.02 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 84
84 | RRX
CR 29 | CR 39
STR | 2.13
0.12 | 139
70 | 240 | 27
14 | 50
40 | 0.00
0.02
0.02 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count Use Count | | 84 | STR | CR 29 | 1.41 | 86 | 230 | 17 | 50 | 0.02 | 1 | 2 6000 | 6000 | Use Count | | 84
84 | STR
CR 33 | CR 33
SH 85 | 1.90
0.91 | 90
334 | 240
470 | 18
104 | 50
150 | 0.02
0.02 | 2 | 2 6000
2 14400 | 6000
14400 | Use Count
Use Count | | 84
84 | SH 85
CR 39 | RRX
CR 43 | 0.02
2.00 | 180
105 | 310
180 | 32
17 | 60
30 | 0.03
0.02 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 84
84 | CR 43
SH 14 | CR
45
END | 1.06
0.26 | 46
0 | 80
0 | 12
0 | 20
0 | 0.01
0.00 | 2 2 | 2 6000
2 1800 | 6000
1800 | Use Count
No Model No Count | | 84
84 | CR 83
CR 93 | CR 93
SRECH | 4.99
0.52 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 84 | CR 129 | CR 131 | 1.01 | 0 | 0 | 0 | Ö | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 84
84 | SH 52
CR 141 | CR 135
END | 0.56
0.47 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 84
84 | CR 151
CR 149 | SH 71
CR 151 | 2.01
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 85
85 | GATE
SH 52 | END
CR 14 | 1.00
0.85
1.00 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 85
85 | CR 14
CR 86 | END
SH 14 | 0.51
2.02 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 1800
2 6000 | 1800
6000 | No Model No Count
No Model No Count | | 85 | CR 68 | CR 74 | 2.98 | 0 | 0 | 0 | Ö | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 85
85 | CR 66
CR 74 | CR 68
CR 84 | 0.99
4.97 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 85
85 | CR 106
SH 14 | CR 108
CR 94 | 1.00
2.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 85
85 | CR 122
SRFCH | GATE
CR 140 | 1.02
3.59 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 85
86 | CR 390
CR 15 | SRFCH
SYSCH | 0.70
1.61 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 | 2 6000
2 6000 | 6000 | No Model No Count | | | LK 15 | SYSCH | 1.61 | U | U | U | | 0.00 | 1 | Z 6000 | 6000 | No Model No Count | | 86
86 | CR 13
SYSCH | CR 15
CR 19 | 0.93
0.27 | 48
0 | 160
0 | 5
0 | 20
0 | 0.01
0.00 | 1 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | |--|--|--|--|---|---|---|---
--|--|---|---|---|---| | 86
86 | CR 49
RRX | CR 51
SYSCH | 0.96
1.67 | 9
394 | 20
550 | 2
63 | 0
90 | 0.00
0.02 | 2 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 86
86 | CR 25
CR 31 | CR 29
STR | 2.09
1.30 | 53
152 | 160
540 | 12
30 | 40
110 | 0.01
0.02 | 1 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 86
86 | CR 29
STR | CR 31
SH 85 | 1.00
0.29 | 60
228 | 180
320 | 16
46 | 50
60 | 0.02
0.01 | 2 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 86
86 | SH 85
CR 39 | RRX
CR 43 | 0.02
2.00 | 0
215 | 460
310 | 0
31 | 20
40 | 0.02
0.01 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 86
86 | SYSCH
CR 43 | CR 39
CR 49 | 0.76
3.00 | 291
61 | 410
120 | 41 | 60
10 | 0.01
0.01 | 2 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 86 | CR 95
SRFCH | CR 105
END | 5.00
1.48 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 86
86 | CR 79 | SRFCH | 2.54
5.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 86
86 | CR 105
CR 115 | CR 115
SH 14 | 0.44 | 33
37 | 50
60 | 13
14 | 20
20 | 0.00
0.01 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 86
86 | SH 14
SRFCH | END
CL RAYMER | 0.33
1.42 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 86
86 | CR 121
CL | SRFCH
CR 129 | 1.99
0.48 | 0 | 0
810 | 0 | 0
420 | 0.00
0.07 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count No Model No Count Derived | | 86
86 | SPLIT
CL | CL
SPLIT | 0.04
0.04 | 0 | 810
810 | 0 | 420
420 | 0.07
0.07 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count Derived
No Model No Count Derived | | 86
86 | CL
CL | CR 129
CR 129 | 0.03
0.04 | 0
533 | 0 810 | 0
277 | 0
420 | 0.00
0.07 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 87 | CR 2 | CR 10 | 4.03 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 87
87 | SH 52
CR 10 | CR 14
SH 52 | 1.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 87
87 | CR 14
CR 42.5 | END
STR | 0.51
0.58 | 316 | 710 | 0
167 | 0
380 | 0.00
0.02 | 8 | 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Count | | 87
87 | STR
GATE | SH 34
SRFCH | 0.33
0.67 | 0 | 230
230 | 0 | 10
10 | 0.02
0.01 | 8 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Model | | 87
87 | SRFCH
SH 34 | STR
SRFCH | 0.04
0.47 | 0
414 | 230
930 | 0
199 | 10
450 | 0.02 | 8 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Count | | 87
87 | RRX
STR | CR 46.5
STR | 1.35
0.11 | 0
316 | 20
710 | 0
167 | 0
380 | 0.00
0.02 | 8 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Count | | 87
87 | CR 74
CR 102 | CR 76
END | 0.99
0.48 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
1800 | 6000
1800 | No Model No Count
No Model No Count | | 87
87 | CR 108 | CR 120
CHATOGA AV | 5.90 | 0 | 0 | 0
82 | 0
190 | 0.00
0.02 | 8 | 2 | 6000 | 6000
14400 | No Model No Count | | 87
87
87 | CR 120
CHATOGA AV
CR 134 | WILSON AV
CR 136 | 0.82
0.28 | 234
0
0 | 0 | 0 | 0 | 0.00
0.00 | 8 | 2 | 14400
14400 | 14400 | Use Count No Model No Count | | 88 | CR 13 | CR 15 | 1.00
0.94 | 75 | 200 | 14 | 40 | 0.02 | 1 | 2 | 6000
6000 | 6000
6000 | No Model No Count Use Count | | 88
88 | CR 129
SRFCH | SRFCH
CR 43 | 3.83
4.03 | 333 | 0
470 | 0
109 | 0
150 | 0.00 | 2 | 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Count | | 88
88 | CR 25
CR 31 | CR 31
FIRST ST | 3.06
1.01 | 61
675 | 180
2510 | 14
74 | 40
280 | 0.02 | 1 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 88
88 | RRX
1ST ST | SRFCH
SH 85 | 0.70
0.26 | 411
1093 | 570
1550 | 127
164 | 180
230 | 0.02
0.05 | 2 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 88
88 | SH 85
CR 43 | RRX
BARR | 0.05
1.46 | 0
77 | 1060
150 | 0 8 | 205
20 | 0.04
0.01 | 2 | 2 | 14400
6000 | 14400
6000 | No Model No Count Derived
Use Count | | 88
88 | SH 14
CR 93 | CR 63
CR 95 | 3.99
1.00 | 0 | 0 | 0 | 0 | 0.00
0.00 | 2 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 88 | SRFCH | CR 93 | 0.10 | 0 | Ö | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 88
88 | CR 127
SRFCH | CR 129
SH 71 | 1.00
4.74 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 89
89 | CR 122
CR 52 | WIDCH
CR 68 | 5.18
8.04 | 0
36 | 0
20 | 0
14 | 0 | 0.00 | 8 | 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Model | | 89
89 | SH 52
BGN | CR 14
SH 52 | 1.00
0.53 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 89
89 | CR 14
SH 34 | CR 16
CR 42.5 | 1.00
0.48 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 89
89 | CR 46.5
CR 84 | CR 52
SH 14 | 2.63
3.01 | 39
0 | 70
0 | 14
0 | 20
0 | 0.01
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 89
89 | CR 100
SH 14 | CR 110
CR 100 | 4.92
5.01 | 96
137 | 150 | 36
50 | 50
80 | 0.01
0.02 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 89 | CR 110 | CL GROVER | 5.42
1.91 | 65 | 100 | 20 | 30
0 | 0.01 | 8 | 2
| 6000 | 6000 | Use Count | | 89
89 | WIDCH
CR 136 | CR 136
COLI | 2.05 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 14400
6000 | 14400
6000 | No Model No Count
No Model No Count | | 89
90 | CR 89 PAVEMENT
CR 13 | CR 136
STR | 0.11
5.33 | 0
102 | 4430 | 0
17 | 0
260 | 0.00
0.37 | 1 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Model | | 90
90 | CR 49
CR 35 | CR 51
CR 37 | 0.97
1.01 | 257
807 | 1090
1010 | 126
299 | 20
20 | 0.04
0.04 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 90
90 | STR
STR | CR 29
CR 31 | 2.66
0.29 | 161
317 | 3550
3550 | 24
57 | 210
210 | 0.30
0.12 | 1 | 2 | 6000
14400 | 6000
14400 | Use Model
Use Model | | 90
90 | CR 29
PRIDDY ST | STR
CR 35 | 0.71
0.78 | 317
0 | 3550
1010 | 57
0 | 210
20 | 0.12
0.04 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 90
90 | CR 41
CR 39 | CR 43
CR 41 | 1.00
1.00 | 767
657 | 1110 | 360
283 | 20 | 0.04 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 90
90 | CR 37
STR | CR 39
CR 49 | 1.04 | 783
378 | 1010 | 305
147 | 20
20 | 0.04
0.04 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 90 | CR 43 | CR 45 | 1.00 | 506 | 1050 | 238 | 20 | 0.04 | 2 | 2 | 14400 | 14400 | Use Model Use Model Use Model | | 90
90 | CR 45
CR 51 | STR / WIDCH
SH 14 | 0.36
3.02 | 0
225 | 1050 | 0
113 | 20
10 | 0.04
0.04 | 2 | 2 | 14400
14400 | 14400
14400 | Use Model | | 90
90 | BGN
CR 149 | CR 123
CR 153 | 0.96
2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 91
91 | CR 4
CR 2 | CR 8
CR 4 | 2.01
1.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 91
91 | SH 52
CR 8 | CR 16 | 1.99 | 0 | 0 | 0 | 0 | | | | | 6000 | No Model No Count | | 91 | | SH 52 | | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000 | No Model No Count | | 91 | FRONTAGE RD
STR | SH 52
STR
SH 34 | 2.01
3.70
0.47 | 0
63
0 | 0
100
110 | | | | 8
8
8 | 2
2
2
2 | 6000
6000 | 6000 | Use Count | | 91
91
91 | FRONTAGE RD
STR
STR | STR
SH 34
STR | 2.01
3.70
0.47
0.80 | 0
69 | 0
100
110
110
0 | 0
25
0
23 | 0
40
40
40 | 0.00
0.01
0.01
0.01 | 8
8
8 | 2
2
2
2
2
2 | 6000
6000
6000 | 6000
6000
6000 | Use Count No Model No Count Derived Use Count | | 91 | FRONTAGE RD
STR
STR
CR 66
BGN | STR
SH 34
STR
CR 68
CR 66 | 2.01
3.70
0.47 | 0
69
0 | 0
100
110
110
0
0 | 0
25
0 | 0
40
40 | 0.00
0.01
0.01 | 8 | 2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000 | 6000
6000
6000
6000
6000 | Use Count No Model No Count Derived Use Count No Model No Count No Model No Count | | 91
91
91
91
91 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 136 | STR
SH 34
STR
CR 68
CR 66
CR 136
CR 138 | 2.01
3.70
0.47
0.80
0.99
0.99
1.01
1.00 | 0
69
0
0
0 | 0
100
110
110
0
0
0 | 0
25
0
23
0
0
0 | 0
40
40
40
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8
8
8
8
8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000 | 6000
6000
6000
6000
6000
6000 | Use Count No Model No Count Derived Use Count No Model No Count | | 91
91
91
91
91
92
92 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 136 CR 33 CR 23 | STR
SH 34
STR
CR 68
CR 66
CR 136
CR 137
CR 37 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01 | 0
69
0
0
0
0 | 0
100
110
110
0
0
0
0 | 0
25
0
23
0
0
0
0 | 0
40
40
40
0
0
0
0
0 | 0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00 | 8
8
8
8
8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No | | 91
91
91
91
91
92
92
92
92 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 136 CR 33 CR 23 CR 41 CR 37 | STR SH 34 STR CR 68 CR 66 CR 136 CR 138 CR 37 CR 25 CR 43 CR 41 | 2.01
3.70
0.47
0.80
0.99
0.99
1.01
1.00
2.02
1.01
1.00 | 0
69
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8
8
8
8
8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Use Count Use Count | | 91
91
91
91
91
91
92
92
92
92
92
92 | FRONTAGE RD
STR
STR
CR 66
BGN
CR 134
CR 136
CR 33
CR 23
CR 41
CR 37
CR 43
CR 66 | STR SH 34 STR CR 68 CR 66 CR 136 CR 136 CR 138 CR 37 CR 25 CR 43 CR 41 END CR 65 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.00
2.02
0.69
0.99 | 0
69
0
0
0
0
0
0
0
0
0
0
43 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8
8
8
8
8
8
8
8
2
1
1
2
2
2
2 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Use Count No Model No Count No Model No Count No Model No Count | | 91
91
91
91
91
92
92
92
92
92
92
92 | FRONTAGE RD
STR
STR
STR
CR 66
BGN
CR 134
CR 136
CR 33
CR 23
CR 41
CR 37
CR 43
CR 63
CR 63 | STR SH 34 STR CR 68 CR 136 CR 136 CR 138 CR 37 CR 25 CR 43 CR 41 END CR 65 CR 89 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.03 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8
8
8
8
8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devolution No Model No Count | | 91
91
91
91
91
92
92
92
92
92
92
92 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 136 CR 33 CR 23 CR 41 CR 37 CR 43 CR 83 CR 83 CR 881 | STR SH 34 STR CR 68 CR 66 CR 136 CR 138 CR 37 CR 25 CR 43 CR 41 END CR 65 CR 83 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
0.69
0.99
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
1110
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 |
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 8
8
8
8
8
8
8
2
1
1
2
2
2
2
2
8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Count No Model Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92 | FRONTAGE RD STR CR 66 BGN CR 134 CR 136 CR 33 CR 23 CR 41 CR 37 CR 43 CR 68 CR 81 CR 81 CR 81 CR 81 | STR SH 34 STR CR 68 CR 66 CR 136 CR 138 CR 37 CR 25 CR 41 END CR 65 CR 83 CR 41 END CR 65 CR 83 CR 83 CR 83 CR 83 CR 83 CR 83 CR 89 CR 155 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
0.69
0.99
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
1110
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8 8 8 8 8 8 8 8 1 1 2 2 2 2 2 2 2 2 8 8 8 8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
92 | FRONTAGE RD STR STR STR CR 66 BGN CR 134 CR 134 CR 136 CR 23 CR 23 CR 41 CR 37 CR 43 CR 63 64 CR 74 | STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 84 CR 66 CR 136 CR 138 CR 41 END CR 65 CR 83 CR 84 85 155 CR 155 CR 155 CR 157 CR 18 | 2.01
3.70
0.47
0.80
0.99
0.99
1.01
1.00
2.02
2.02
0.69
0.99
1.00
1.00
0.69
0.99
1.00
2.02
2.02
2.02
2.02
2.02
3.04
3.04
3.04
3.04
3.04
3.04
3.04
3.04 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Count No Model Use Count No Model No Use Count No Model No Count No Model No Count Use Count No Model No Count | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
92 | FRONTAGE RD STR STR STR CR 66 BGN CR 134 CR 134 CR 23 CR 23 CR 23 CR 41 CR 37 CR 43 CR 65 CR 136 CR 136 CR 136 CR 136 CR 137 CR 41 CR 43 CR 63 CR 63 CR 152 CR 152 CR 152 CR 153 154 CR 168 CR 74 CR 68 | STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 83 CR 84 85 CR 85 CR 85 CR 85 CR 87 CR 87 CR 155 CR 157 CR 167 CR 167 CR 167 CR 167 CR 174 CR 140 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
0.69
0.99
1.00
2.02
1.01
1.00
2.02
0.99
1.01
1.00
2.02
0.99
1.01
1.00
2.02
0.99
1.01
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
0.99
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
110
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8 8 8 8 8 8 8 2 1 1 2 2 2 2 2 2 8 8 8 8 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Count No Model Use Count No Model No Use Count Use Count No Model No Count No Model No Count Use Count No Model No | |
91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
94 | FRONTAGE RD STR STR STR CR 66 BGN CR 134 CR 134 CR 136 CR 33 CR 23 CR 41 CR 37 CR 43 CR 66 CR 136 CR 136 CR 136 CR 136 CR 136 CR 137 CR 43 CR 63 CR 63 CR 152 CR 152 CR 153 154 CR 174 CR 68 CR 174 CR 677 | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 83 CR 84 CR 155 CR 185 CR 187 CR 167 CR 167 CR 126 CR 176 CR 176 CR 176 CR 176 CR 176 CR 177 1 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
0.69
1.00
1.00
2.02
2.02
1.01
1.00
2.02
2.02 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00 | 8 8 8 8 8 8 8 2 2 1 1 2 2 2 2 2 8 8 8 8 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6000 6000 6000 6000 6000 6000 6000 600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Count No Model Use Count No Model No Use Count No Model No Count Use Count No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
94
94 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 134 CR 134 CR 33 CR 23 CR 41 CR 37 CR 43 CR 63 CR 63 CR 136 CR 136 CR 136 CR 136 CR 137 CR 47 CR 63 CR 153 154 CR 174 CR 68 CR 190 CR 77 RRX RRX BGN | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 83 CR 84 CR 155 CR 185 CR 157 CR 167 CR 126 CR 127 CR 127 CR 141 CR 74 CR 140 CR 27 CR 140 141 CR 74 CR 140 CR 140 CR 140 CR 141 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6000 6000 6000 6000 6000 6000 6000 600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Derived Use Count No Model No Use Count No Model No Use Count No Model No Count Use Count No Model No Count Use Count No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
93
94
94 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 134 CR 136 CR 33 CR 23 CR 41 CR 37 CR 48 CR 66 CR 136 CR 77 CR 18 CR 18 CR 19 | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 83 CR 89 CR 157 CR 157 CR 167 CR 126 CR 127 SH 14 | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
2.03
1.00
1.00
2.03
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000
6000
6000
6000
6000
6000
6000
600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
94
94 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 134 CR 134 CR 33 CR 23 CR 41 CR 37 CR 47 CR 48 CR 66 CR 136 CR 136 CR 136 CR 136 CR 137 CR 47 CR 63 CR 153 CR 155 CR 155 CR 155 CR 155 CR 157 CR 158 CR 158 CR 158 CR 174 CR 68 CR 19 CR 74 CR 68 CR 19 CR 77 CR 19 CR 77 CR 19 CR 77 CR 19 CR 77 CR 19 CR 19 CR 77 CR 19 CR 19 CR 19 CR 77 CR 19 77 CR 19 77 CR 19 | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 89 CR 157 CR 167 CR 187 CR 197 27 SH 85 27 CR 27 SH 27 CR | 2.01
3.70
0.47
0.80
0.99
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6000 6000 6000 6000 6000 6000 6000 600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Devide No Model No Count Use Count No Model No Use Count No Model No Count Use Count Use Count Use Count No Model No Count Use Count No Model No Use Use Count Use Count Use Count Use Count | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
93
94
94
94 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 134 CR 134 CR 33 CR 23 CR 41 CR 37 CR 47 CR 47 CR 48 CR 18 BGN CR 136 CR 136 CR 136 CR 136 CR 136 CR 137 CR 41 CR 42 CR 43 CR 63 CR 153 CR 155 156 CR 19 CR 19 CR 74 CR 68 CR 19 CR 77 78 | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 89 CR 157 CR 18 CR 27 SH 14 CR 74 CR 140 CR 22 SH 14 CR 74 CR 140 CR 22 SH 14 CR 74 CR 140 CR 23 CR 79 CR 41 CR 27 SH 85 CR 187 CR 187 CR 187 CR 187 CR 188 CR 27 SH 87 CR 187 | 2.01
3.70
0.47
0.80
0.99
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 | 6000 6000 6000 6000 6000 6000 6000 600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Derived Use Count No Model No Use Count No Model No Count Use Count No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
94
94
94
94
94 | FRONTAGE RD STR STR STR STR STR GR 66 BGN CR 134 CR 134 CR 133 CR 23 CR 41 CR 37 CR 43 CR 66 CR 136 CR 136 CR 137 CR 43 CR 61 CR 153 154 CR 157 CR 158 CR 158 CR 158 CR 159 CR 171 CR 77 C | STR SH 34 STR CR 68 CR 68 CR 68 CR 136 CR 136 CR 138 CR 37 CR 25 CR 41 CR 41 END CR 68 CR 89 CR 155 CR 157 | 2 01
3 70
0 47
0 80
0 99
1 01
1 00
2 02
1 01
1 00
2 02
0 69
1 00
2 02
1 01
1 00
2 02
2 0 69
1 00
2 02
2 0 69
1 00
2 02
2 0 69
1 00
2 02
2 0 69
2 69 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Count No Model No Use Count Use Count Use Count Use Count No Model No Count No Model No Count No Model No Count Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
92
92 | FRONTAGE RD STR STR STR STR STR CR 66 BGN CR 134 CR 134 CR 136 CR 23 CR 41 CR 37 CR 43 CR 63 CR 83 CR 82 CR 41 CR 71 CR 43 CR 63 CR 136 137 CR 77 C | STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 138 CR 37 CR 25 CR 43 CR 41 END CR 68 CR 89 CR 155 CR 157 | 2 01
3 70
0 47
0 80
0 99
1 01
1 00
2 02
1 01
1 00
2 02
1 01
1 00
2 02
0 69
1 00
0 39
1 00
2 02
0 69
1 00
0 39
1 0 39
1 00
0 0 5
0 0 5
0 0 5
0 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 |
0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000
6000
6000
6000
6000
6000
6000
600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Count No Model No Use Count No Model No | | 91
91
91
91
91
92
92
92
92
92
92
92
92
92
92
92
93
93
93
93
93
94
94
94
94
94
94 | FRONTAGE RD STR STR CR 66 BGN CR 134 CR 134 CR 134 CR 33 CR 23 CR 41 CR 37 CR 41 CR 37 CR 42 CR 66 CR 136 CR 136 CR 136 CR 136 CR 136 CR 137 CR 41 CR 74 CR 68 CR 136 CR 153 CR 155 156 CR 19 CR 74 CR 68 CR 19 CR 77 78 122 | STR SH 34 STR SH 34 STR CR 68 CR 68 CR 136 CR 136 CR 137 CR 25 CR 43 CR 41 END CR 65 CR 83 CR 83 CR 89 CR 155 CR 157 CR 157 CR 167 CR 128 CR 127 SH 140 CR 127 SH 18 CR 27 SH 18 CR 27 SH 83 CR 89 CR 157 CR 18 CR 19 11 | 2.01
3.70
0.47
0.80
0.99
1.00
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
2.02
1.01
1.00
1.00 | 0
69
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
100
110
110
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
25
0
23
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
40
40
40
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | 6000 6000 6000 6000 6000 6000 6000 600 | 6000 6000 6000 6000 6000 6000 6000 600 | Use Count No Model No Count Derived Use Count No Model No Count Deviced Use Count No Model No Use Count No Model No Use Count No Model No Count Use Count Use Count Use Count Use Count Use Count Use Count No Model No No Model No Count No Model No Count Use Count No Model No Count No Model No Count Use Count No Model No | | 95 | CR 22 | CR 26.5 | 2.51 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | |------------|-----------------------|------------------------|--------------|--------------|----------------|------------|------------|----------------------|--------|--------------------|----------------|--| | 95
95 | SH 76
SRFCH | SRFCH
LG | 0.02
0.29 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 95
95 | CR 86
CR 62 | SH 14
CR 68 | 2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 95 | BARR | CR 80 | 0.53 | Ö | 0 | ŏ | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 95
95 | SH 14
CR 112 | CR 96
CR 122 | 3.01
5.00 | 32 | 50 | 0
24 | 0
40 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 95
95 | CR 110
SRFCH | CR 390
CR 390 | 0.25
0.02 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 14400 | 6000
14400 | No Model No Count
No Model No Count | | 95
95 | CR 136
SRFCH | SRFCH
CR 140 | 1.42
0.58 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 96
96 | CR 15
CR 13 | STR
CR 15 | 3.61
1.02 | 42
93 | 260
260 | 6
10 | 20
30 | 0.02
0.02 | 1 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Count | | 96 | CR 35 | CR 39 | 2.02 | 4 | 10
10 | 1 | 0 | 0.00 | 2 | 2 6000 | 6000 | Use Count | | 96
96 | STR
CR 29 | CR 29
SH 85 | 3.35
1.10 | 85
63 | 300 | 55
15 | 10
20 | 0.01
0.03 | 1 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 96
96 | CR 33
CR 41 | CR 35
CR 43 | 1.01
0.98 | 0
23 | <u>0</u>
50 | 0
0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 96
96 | CR 39
CR 61 | CR 41
CR 69 | 1.00
3.97 | 46
0 | 90
0 | 12
0 | 20 | 0.01 | 2 | 2 6000 | 6000
6000 | Use Count
No Model No Count | | 96
96 | STR
CR 57 | CR 61
STR | 1.09
0.91 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 96 | CR 69 | CR 77 | 3.99 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000 | 6000 | No Model No Count | | 96
96 | N GRASSLAND
CR 95 | CR 103
N GRASSLAND | 3.02
1.01 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 97
97 | CR 52
CR 2 | CR 62
CR 4 | 5.03
1.01 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 97
97 | BARR
MORGAN CO RD | MORGAN CO RD
CR 52 | 1.78
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 97
97 | CR 86
CR 68 | SH 14
CR 74 AT COLI | 2.00
2.98 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 97
97 | CR 62 | CR 68 | 3.00 | 0 | 0 | 0 | Ŏ
O | 0.00 | 8 8 | 2 6000 | 6000 | No Model No Count | | 97 | BEGIN
SRFCH | SRFCH
CR 390 | 2.20
0.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 14400 | 6000
14400 | No Model No Count
No Model No Count | | 97
98 | CR 122
CR 131 | END
CR 133 | 1.04
0.95 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 98
98 | CR 31
CR 27.5 | CR 41
CR 29 | 4.99
0.49 | 172
0 | 290
0 | 31
0 | 50
0 | 0.02 | 2 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 98
98 | CR 27
RRX | CR 27.5
SPLIT | 0.49
0.10 | 0 | 390 | 0 | 0
70 | 0.00
0.03 | 1 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count No Model No Count Derived | | 98
98 | CR 29
SH 85 | US 85 | 0.00
0.01 | 80
235 | 280 | 42
40 | 150
70 | 0.03
0.02
0.03 | 1 1 | 2 6000
2 6000 | 6000
6000 | Use Count Use Count | | 98 | SPLIT | RRX
CR 31 | 0.10 | 235 | 390 | 40 | 70 | 0.03 | 2 | 2 6000 | 6000 | Use Count | | 98
98 | CR 41
CR 103 | CR 43
CL KEOTA | 0.99
0.39 | 0
260 | 0
410 | 0
205 | 0
320 | 0.00
0.03 | 2
8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 98
98 | CR 105
CR 127 | CR 115
CR 131 | 5.15
1.79 | 0 | 170
0 | 0 | 90 | 0.01 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count Derived
No Model No Count | | 98
98 | CR 133
CR 29 | END
US 85 | 0.50
0.80 | 0 | 280 | 0 | 0
150 | 0.00
0.01 | 8 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Count | | 99 | CR 80 | CR 86
CR 102 | 3.01 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 6000 | 6000 | No Model No Count | | 99 | CR 100
CR 112 | END | 0.61 | Ő | 0 | Ö | 0 | 0.00 | 8 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 99
99 | CR 130
CR 136 | CR 136
CR 140 | 3.01
2.01 | 0
 | 0
130 | 0
25 | 0
40 | 0.00
0.01 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 100
100 | CR 17
COLI | CR 27
CR 17 | 5.03
1.97 | 1172
1785 | 5110
4350 | 246
339 | 260
180 | 0.18
0.15 | 1 | 2 14400
2 14400 | 14400
14400 | Use Model
Use Model | | 100
100 | CR 77
CR 49 | STR
STR | 5.14
2.71 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 100
100 | STR
CR 27.5 | CR 41
CR 29 | 3.00
0.49 | 0
1117 | 0 | 0
235 | 0
140 | 0.00
0.12 | 2 | 2 6000
2 14400 | 6000
14400 | No Model No Count | | 100 | CR 27 | SPLIT | 0.26 | 0 | 3460 | 0 | 140 | 0.12 | 1 | 2 14400 | 14400 | Use Model
Use Model | | 100
100 | SPLIT
CR 31 | CR 27.5
STR | 0.24
2.00 | 275 | 3460
420 | 235
50 | 140
80 | 0.12
0.04 | 1
2 | 2 14400
2 6000 | 14400
6000 | Use Model
Use Count | | 100
100 | SPLIT
RRX | CR 31
SPLIT | 0.25
0.25 | 317
0 | 490
530 | 51
0 | 80
90 | 0.04 | 2 2 | 2 6000
2 14400 | 6000
14400 | Use Count
No Model No Count Derived | | 100
100 | STR
CR 57 | CR 57
END | 1.30
0.61 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 100 | CR 75 | CR 77 | 1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 100
100 | CR 89
STR | N GRASSLAND
CR 89 | 0.87 | 154 | 220 | 20
35 | 40
50 | 0.01
0.02 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 100
100 | N GRASSLAND
CR 105 | CR 390
GATE | 2.97
1.01 | 67
0 | 90
0 | 32
0 | 40
0 | 0.01 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 100
100 | CR 133
CR 149 | CR 139
CR 153 | 2.46 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 101
101 | CR 78
CR 122 | CR 80
END | 1.00
0.51 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 102 | STR | CR 27 | 3.97
1.22 | 35 | 60 | 7
0 | 10 | 0.01
0.01 | 8 | 2 6000
2 6000 | 6000 | Use Count | | 102
102 | COLI
CR 17 | SRFCH
STR | 1.05 | 49
15 | 90
20 | 3 | 0 | 0.00 | 8 | 2 6000 | 6000
6000 | Use Count
Use Count | | 102
102 | SRFCH
CR 33 | CR 17
CR 37 | 0.75
2.00 | 70
0 | 110
0 | 8
0 | 10
0 | 0.01
0.00 | 8 | 2 6000
2 6000 | 6000
6000 |
Use Count
No Model No Count | | 102
102 | CR 27
CR 29.5 | END
CR 31 | 0.50
0.49 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 1800 | 6000
1800 | No Model No Count
No Model No Count | | 102
102 | STR
CR 37 | CR 45
STR | 1.25
1.65 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 102 | STR | CR 41 | 0.37 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 102
102 | STR
CR 41 | STR
STR | 0.48 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000 | No Model No Count
No Model No Count | | 102
102 | CR 45
CR 73 | CR 49
CR 75 | 2.00
0.99 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 102
102 | CR 87
CR 9710 | CR 89
CR 99 | 1.01
0.89 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 1800
2 6000 | 1800
6000 | No Model No Count
No Model No Count | | 102
102 | SH 71
CR 141 | CR 149
SH 71 | 1.99
2.01 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 103 | BGN | CR 76 | 0.58 | 0 | Ŏ | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 103
103 | CR 76
CR 390 | CR 78
CR 112 | 1.00
5.91 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 103
103 | SH 14
GATE | CR 98
CR 118 | 4.02
1.87 | 259
0 | 400
0 | 203
0 | 320
0 | 0.03
0.00 | 8 | 2 6000
2 1800 | 6000
1800 | Use Count
No Model No Count | | 103
104 | CR 118
SRFCH | CR 122
CR 17 | 1.99
1.50 | 90 | 0
140 | 0
16 | 0
30 | 0.00
0.01 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 104
104 | BGN
RRX | CR 21
SH 85 | 0.73
0.09 | 0 | 70 | 0 | 0 | 0.00 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 104 | CR 25 | CR 27 | 1.01 | 45
0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 104
104 | CR 27
SH 85 | RRX
CR 31 | 0.89
1.02 | 45
0 | /U
0 | 5
0 | 10
0 | 0.01
0.00 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
No Model No Count | | 104
104 | BGN
CR 57 | CR 49
CR 73 | 0.75
7.95 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 104
104 | CR 390
CR 105 | CR 105
CR 119 | 2.79
6.90 | 374
815 | 600
1310 | 220
432 | 350
700 | 0.05
0.11 | 8 | 2 6000
2 6000 | 6000
6000 | Use Count
Use Count | | 104
104 | SRFCH
CR 127 | CR 119
CR 129 | 0.07
0.92 | 0 | 2480 | 0 | 1340
0 | 0.09 | 8 8 | 2 14400
2 6000 | 14400
6000 | No Model No Count Derived
No Model No Count | | 104 | CR 139 | CR 141 | 1.07 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 104
105 | CR 153
CR 122 | LOGAN COLI
CR 128 | 1.99
3.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 105
105 | CR 86
CR 74 | SH 14
CR 86 | 2.01
6.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 105
105 | SH 14 | CR 390
CR 104 | 3.59
2.67 | 707
0 | 1590
0 | 460
0 | 1040
0 | 0.06 | 8 8 | 2 14400
2 6000 | 14400
6000 | Use Count
No Model No Count | | 105 | BGN | CR 112 | 0.48 | 0 | Ŏ | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 105
105 | CR 128
CR 136 | CR 136
CR 140 | 4.03
1.95 | 0
56 | 100 | 0
12 | 0
20 | 0.00
0.01 | 8 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
Use Count | | 106
106 | CR 15
CR 77 | CR 17
STR | 1.00
0.34 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 100 | CR 49 | CR 57 | 4.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 106
106 | CR 33 | STR | 1.48 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 6000 | 6000 | No Model No Count | | 106 | CR 31 | CR 33 | 1.00 | 0 | 0 | 0 | 0 | 0.00 | Ω Ι | 2 | 6000 | 6000 | No Model No Count | |-------------------|----------------------|----------------------|--------------|------------|--------------|------------|-------------|--------------|-----|---|---------------|---------------|--| | 106 | STR | CR 37 | 0.53 | 0 | 0 | 0 | Ō | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 106
106 | CR 45
CR 73 | CR 49
CR 77 | 1.88
2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 106
106 | STR
STR | CR 89
STR | 4.88
0.80 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 106 | CR 111 | END | 1.13 | 0 | ŏ | Ö | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 106
107 | CR 107
CR 74 | GATE
CR 78 | 0.23
2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 107
107 | CR 106
CR 104 | WIDCH
CR 106 | 0.59
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 107
107 | CR 112
BGN | CR 124
CR 128 | 5.92
0.14 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 108 | CR 77 | SRFCH | 1.53 | 0 | Ŏ | Ŏ | Ö | 0.00 | 8 | 2 | 240 | 240 | No Model No Count | | 108
108 | CR 49
SH 85 | CR 53
CR 108.05 | 2.03
3.93 | 0
108 | 0
260 | 0
19 | 0
50 | 0.00
0.01 | 8 | 2 | 6000
14400 | 6000
14400 | No Model No Count
Use Count | | 108
108 | RRX
CR 25 | SH 85
CR 27 | 0.71
1.03 | 48 | 80
0 | 5
0 | 10
0 | 0.01 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 108 | CR 27 | RRX | 0.26 | 48 | 80 | 5 | 10 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 108
108 | CR 37
CR 108.05 | CR 45
CR 37 | 4.00
0.07 | 14
0 | 0 | Ö | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
No Model No Count | | 108
108 | CR 53
CR 59 | CR 57
BARR | 1.99
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 108
108 | CR 57
CR 85 | CR 59
CR 87 | 1.01
1.02 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 109 | CR 78 | CR 80 | 1.00 | 0 | Ö | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 109
110 | CR 128
CR 21 | END
CR 27 | 0.81
3.03 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 110
110 | COLI
CR 27 | CR 21
SH 85 | 3.97
1.00 | 0 | 0
0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 110
110 | CR 43
CR 69 | CR 45
CR 73 | 1.01
1.99 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 110 | CR 73 | CR 77 | 2.00 | 0 | Ŏ
O | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 110
110 | CR 87
SRFCH | CR 390
CR 390 | 4.17
0.02 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 | 6000
14400 | 6000
14400 | No Model No Count
No Model No Count | | 110
110 | STR
CR 111 | CR 119
CR 113 | 0.99
0.98 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 110
110 | CR 115
CR 119 | STR
CR 127 | 0.98
3.97 | 0
288 | 0
450 | 0
170 | 0
270 | 0.00
0.04 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 110 | CR 149 | END | 1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 111
111 | CR 124
CR 104 | CR 128
CR 112 | 2.01
4.17 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 111
111 | CR 134
CR 128 | CR 136
CR 134 | 1.00
3.01 | 46
29 | 80
50 | 18
8 | 30
10 | 0.01
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 111
112 | CR 136
CR 21 | STATE LINE
CR 23 | 1.94
0.99 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000 | No Model No Count
No Model No Count | | 112 | BARR | CR 15 | 0.75 | 0 | ŏ | Ö | Ö | 0.00 | 8 | 2 | 6000 | 6000
6000 | No Model No Count | | 112
112 | CR 53
N GRASSLAND | END
CR 107 | 1.60
5.04 | 0
31 | 50
50 | 0
16 | 0
20 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 112
112 | BGN
SRFCH | CR 87
N GRASSLAND | 0.35
1.38 | 0
64 | 0
100 | 0
48 | 70 | 0.00
0.01 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 112
112 | CR 390
CR 111 | SRFCH
END | 0.04
3.04 | 105 | 260 | 83
0 | 210
0 | 0.01
0.00 | 8 | 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 112 | CR 107 | CR 111 | 1.97 | 42 | 70 | 24 | 40 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 112
113 | SH 71
BGN | CR 153
CR 80 | 4.05
1.55 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 113
113 | CR 80
CR 86 | CR 86
SH 14 | 3.01
1.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 113
114 | CR 110
CR 77 | CR 110.5
CR 79 | 0.50
1.00 | 0 | Ŏ
O | 0 | 0 | 0.00
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count | | 114 | CR 49 | SRFCH | 1.54 | 0 | 0 | Ö | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count
No Model No Count | | 114
114 | SH 85
CR 27 | CR 37
SH 85 | 4.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 114
114 | CR 37
SRFCH | CR 49
CR 53 | 5.98
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No
Count | | 114 | CR 69 | CR 77 | 4.00 | 0 | Ŏ | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 114
114 | BGN
SRFCH | CR 87
CR 95 | 1.03
0.91 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 114
115 | CR 390
SH 14 | SRFCH
SRFCH | 0.02
5.29 | 0
113 | 0
170 | 0
57 | 0
90 | 0.00 | 8 | 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Count | | 115
115 | COLI
CR 86 | CR 86
SH 14 | 6.01
0.56 | 0 | 30
30 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Model
Use Model | | 115 | SRFCH | CR 98 | 0.22 | 113 | 170 | 57 | 90 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 115
115 | CR 104
CR 110 | BARR
CR 110.5 | 0.38
0.50 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 115
115 | PG
CR 134 | CR 382
STATE LINE | 0.57
2.86 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 116
116 | CR 127
CR 77 | CR 133
FND | 3.22
0.81 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 116 | SH 71 | CR 149 | 2.01 | 0 | ŏ | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 117
118 | CR 134
CR 120 | COLI
RRX | 2.84
1.97 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 118
118 | CR 77
CR 103 | CR 81
CR 107 | 1.98
1.99 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 118
118 | CR 390
CR 382 | CR 95
CR 127 | 2.06
4.24 | 59
0 | 90 | 42
0 | 70
0 | 0.01
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count No Model No Count | | 119 | CR 76 | SH 14 | 4.17 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 119
119 | SRFCH
SRFCH | SRFCH
SRFCH | 0.07
1.23 | 0 | 1630
1630 | 0
0 | 920
920 | 0.06
0.14 | 8 | 2 | 14400
6000 | 14400
6000 | No Model No Count Derived
No Model No Count Derived | | 119
119 | CR 104
SRFCH | SRFCH
CR 110 | 0.07
1.64 | 943
500 | 2480
780 | 509
320 | 1340
500 | 0.09
0.07 | 8 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 119
119 | CR 128
SRECH | CR 134
CR 128 | 3.02
0.53 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 119 | CR 126 | SRFCH | 0.47 | 0 | Ŏ | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 120
120 | CR 15
CR 17 | CR 17
CR 118 | 1.00
1.43 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 120
120 | CR 77
CR 23 | STR
SH 85 | 4.32
2.81 | 263
0 | 590
0 | 95
0 | 210
0 | 0.02
0.00 | 8 | 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 120
120 | CR 55
STR | STR
CR 77 | 5.04
5.83 | 0
34 | 0
50 | 0
16 | 0
30 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 120 | STR | CR 87 | 0.65 | 222 | 530 | 58 | 140
0 | 0.02 | 8 | 2 | 14400 | 14400 | Use Count No Model No Count | | 120
120 | CR 135
CR 133 | SH 71
CR 135 | 4.78
1.23 | 0
443 | 680 | 0
230 | 350 | 0.00
0.06 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count | | 121
121 | CR 74
SH 14 | SH 14
CR 86 | 5.07
0.95 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 122
122 | CR 17
CR 77 | CR 19
STR | 1.00
4.23 | 0
25 | 0
40 | 0
11 | 0
20 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 122
122 | CR 49
STR | CR 55
CR 37 | 3.07
2.18 | 162 | 270 | 87
0 | 150
40 | 0.02
0.01 | 8 9 | 2 | 6000
6000 | 6000
6000 | Use Count No Model No Count Derived | | 122 | STR | STR | 1.90 | 77 | 160 | 29 | 60 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 122
122 | SH 85
CR 37 | STR
CR 49 | 0.08
5.99 | 0
58 | 120
230 | 0
25 | 40
100 | 0.01
0.02 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count Derived Use Count | | 122
122 | GATE
CR 75 | CR 75
CR 77 | 0.74
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 122 | CR 97 | CR 105 | 4.08
3.94 | 84 | 130 | 32
41 | 50 | 0.01 | 8 8 | 2 | 6000 | 6000 | Use Count | | 122
122 | CHATOGA AV
CR 105 | CR 97
CR 107 | 1.00 | 111
40 | 60 | 20 | 60
30 | 0.01
0.01 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 123
123 | CR 86
CR 76 | END
SH 14 | 3.02
4.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 123
124 | SH 14
CR 17 | CR 86
CR 19 | 1.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 124
124
124 | CR 19
CR 63 | CR 21
STR | 0.85
4.29 | 0
32 | 0 | 0
15 | 0 20 | 0.00
0.00 | 8 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count Use Count | | 124 | CR 55 | N GRASSLAND | 2.02 | 32 | 50 | 13 | 20 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 124
124 | N GRASSLAND
STR | CR 63
CR 77 | 1.95
2.48 | 513
41 | 830
70 | 13
15 | 20
20 | 0.07
0.01 | 8 | 2 | 6000
6000 | 6000
6000 | Use Count
Use Count | | 124 | STR | STR | 0.13 | 34 | 50 | 15 | 20 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 124
124 | BGN | CR 105 | 0.21 | 0 | | 0 | 0 | 0.00 | 8 | | 6000 | 6000 | No Model No Count | | 1 | 124 | BGN | CR 83 | 0.63 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | |---|------------|------------------|------------------|--------------|---------|--------------|---------|-----|--------------|-----|---|--------------|--------------|--| | 14 14 14 15 16 17 18 18 18 18 18 18 18 | 124 | CR 111 | END | 1.34 | | 0 | | Ō | 0.00 | 8 8 | 2 | 6000 | 6000 | No Model No Count | | 14 | 124 | CR 125 | CR 127 | 0.91 | 0 | 0 | Ö | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 14 15 15 15 15 15 15 15 | 125 | CR 124 | CR 128 | 2.06 | 13 | 20 | 5 | 10 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 10 | 125 | CR 128 | CR 134 | 2.99 | | 20 | 3 | 10 | 0.00 | | 2 | 6000 | 6000 | Use Count | | 1. | 126 | STR | SRFCH | 0.93 | | 5220 | 140 | 20 | 0.18 | | 2 | 14400 | 14400 | Use Model | | 1. 1. 1. 1. 1. 1. 1. 1. | 126 | CR 128 | CR 17 | 0.50 | 449 | 5220
5220 | 225 | 20 | 0.18 | | 2 | 14400 | 14400 | Use Model | | 14 | 126 | | | 0.65 | | 5220
5220 | | | | | 2 | | | | | 1.5
1.5 | | | | | 0 | 0
5220 | | | 0.00
0.18 | 8 | 2 | | | Use Model | | 140 | 126 | CR 55 | | | 0 | 0 | | | | 8 | 2 | 6000 | 6000 | No Model No Count | | 19.1 | 126 | BGN | CR 75 | 0.28 | | 0 | | | 0.00 | | 2 | 1800 | 1800 | No Model No Count | | 1. 1. 1. 1. 1. 1. 1. 1. | 126 | CR 131 | END | 0.08 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 127 | 126.5 | CR 128 | CONNECTOR | 0.12 | 0 | 0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 117 | 127 | CR 86 | SRFCH | 2.00 | 0 | 0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 127 | 127 | CR 98 | CR 110 | 6.15 | 428 | 650 | 210 | 320 | 0.05 | | 2 | 6000 | 6000 | Use Count | | 178 | 127 | CR 110 | CR 118 | 4.10 | 376 | 0
590 | 153 | 240 | 0.05 | 8 | 2 | 6000 | 6000 | Use Count | | 141 | 128 | | CR 126 | 0.82 | 449 | 190
5220 | | 20 | 0.18 | 8 | 2 | | | | | 1-10 | | | | | | 2120
5220 | | | | | 2 | | | | | 148 | 128 | CR 126.5 | CONNECTOR | 0.10 | 0 | 5220
0 | 0 | 20 | 0.18 | 8 | 2 | 14400 | 14400 | Use Model | | 1-10 | | | | | 0 | 0 | | | 0.00 | | 2 | | 6000 | No Model No Count | | 182 | 128 | BGN | CR 77 | 1.10 | | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 142 | 128 | FENCE | CR 95 | 0.28 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 1-92 C. 171 | 128 | CR 105 | CR 111 | 3.04 | 0 | 0 | ŏ | Ö | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 192 GR 80 MOT O.1. O. O. O. O. O. O. | 129 | CL | STR | 3.35 | | 810 | 269 | 410 | 0.07 | 8 | 2 | 6000 | 6000 | Use Count | | 1-22 | 129 | CR 86 | SPLIT | 0.13 | 0 | 100
0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 1-12 | 129 | SPLIT
STR | CR 129.5 | | 533 | 810
800 | | | | 8 | 2 | 6000 | 6000 | Use Count | | 172 123 134 123 134 135 | | | | | | 0 | | | | | 2 | | | | | 100 C4 C5 C6 C6 C7 C7 C7 C7 C7 C7 | | | | 1.01 | | 0
20 | 0 | | | | 2 | 6000 | 6000 | No Model No Count | | 100 CR 100 CR 17 2 2 2 0 0 0 0 0 0 0 | 130 | CR 59 | END | 0.94 | 0 | 0 | | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 100 660 | 130 | CR 69 | CR 75 | 2.92 | 0 | 0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 100 CP_127 SECCH O.6 | 130 | BGN | CR 95 | 0.51 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 131 CR 74 SH 14 6.01 0 0 0 0 0 0 0 0 0 | 130 | CR 125 | SRFCH | 0.61 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 131 | 131 | CR 74 | SH 14 | 6.01 | 0 | 0 | Ō | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 132 CR. 777 CR. 837 2-99 O | 131 | CR 12950 | CR 98 | 1.14 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 132 | | | | | | 30
0 | | | | 8 | 2 | | | Use Count
No Model No Count | | 132 CR 135 CR 125 2-98 0 | 132 | CR 67 | CR 77 | 4.91 | 31
0 | 50
0 | | | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 132 | 132 | CR 119 | CR 125 | 2.93 | 0 | 0
10 | | | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 133 | 132 | CR 135 | SH 71 | 5.03 | 16 | 30 | 3 | 10 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 133 | 133 | SH 14 | END | 0.30 | 0 | 0 | | Ö | 0.00 | | 2 | 14400 | 14400 | No Model No Count | | 134 | 133 | BGN | CR 116 | 1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800 | 1800 | No Model No Count | | 134 SPECH CR. 81 0.62 0. 0 0. 0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 134 | CR 129 | CR 135 | 2.98 | 20 | 30 | 7 | 10 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 134 CR 151 CR 125 6.93 38 661 12 20 0.0 0.0 8 2 6000 6000 No Model No Count | 134 | SRFCH | CR 81 | 0.62 | 0 | 0 | Ö | Ö | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 134 CR 125 CR 129 2.00 21 420 5 1.0 0.00 8 2 56000 6000 Use Count | 134 | CR 85 | CR 89 | 2.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 135 | 134 | CR 125 | CR 129 | 2.00 | | 60
40 | | 10 | 0.00 | 8 | 2 | 6000 | 6000 | Use Count | | 135 | 135 | SH 14 | CR 131 | 5.63 | 38 | 10
60 | 1
13 | 20 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count
Use Count | | 135 | | | | | | 20
0 | | | | | 2 | | | | | 136 | 135
135 | CR 100
CR 134 | | 1.96
2.74 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | | 6000 | No Model No Count | | 136 | | | STR
FND | | | 870
0 | | | | 8 | 2 | | | Use Count
No Model No Count | | 136 | 136 | CR 71 | CR 77 | 2.93 | 73 | 110
160 | 26 | 40 | 0.01 | | 2 | 6000 | 6000 | Use Count | | 136 | 136 | CR 89 | CR 97 | 4.04 | 170 | 270 | 104 | 170 | 0.02 | 8 | 2 | 6000 | 6000 | Use Count | | 136 | 136 | STR | CR 390 | 0.29 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 14400 | 14400 | No Model No Count | | 136 | 136 | CR 89 | CR 89 | 0.12 | 0 | 0 | Ö | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 137 | 136 | CR 105 | CR 111 | 2.99 | 92 | 150 | 69 | 110 | 0.01 | 8 | 2 | 6000 | 6000 | Use Count | | 138 | 137 | SH 14 | SRFCH | 1.98 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 138 | 138 | SH 85 | CR 39 | 4.52 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 138 | 138 | CR 79 | CR 81 | 0.98 | 0 | 0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 138 | 138 | CR 91 | CR 97 | 3.02 | 0 | 0 | 0 | 0 | 0.00 | | 2 | 6000 | 6000 | No Model No Count | | 138 | 138 | SRFCH | CR 115 | 1.61 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count
No Model No Count | | 139 | 138
139 | CR 135
CR 78 | POSTED | | | 0 | | 0 | 0.00 | | 2 | | | No Model No Count | | 139 | 139 | CR 74 | CR 76 | 1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 140 | 139 | SH 14 | CR 88 | 1.00 | 0 | 0 | ŏ | Ö | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 140 | 139 | CR 104 | END | | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 140 CR 85 END 0.49 0 0 0 0.00 8 2 6000 6000 No Model No Count 140 CR 105 END 0.47 0 0 0 0.00 8 2 6000 6000 No Model No Count 140 CR 123 CR 127 1.97 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SH 14 SBFCH 3.74 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 CR 84 SBFCH 0.52 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SBFCH SH 14 0.49 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SBFCH SH 14 0.49 0 0 0 0.00 8 2 | 140 | CR 83 | CR 85 | 1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 140 CR 123 CR 127 1.97 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SH 144 SRECH 3.74 0 0 0 0.00 8 2 6000 6000 No Model No Count 141 CR 84 SRECH 0.52 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SRECH SH 14 0.49 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SRECH END 0.89 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SRECH END 0.89 0 0 0 0.00 8 2 6000 6000 No Model No Count 141 CR 102 CR 104 0.82 0 0 0 0.00 8 2 | 140 | CR 85 | END | 0.49 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 141 CR 84 SRFCH 0.52 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SRFCH SH 14 0.49 0 0 0 0.00 8 2 1800 1800 No Model No Count 141 SRFCH END 0 0 0 0.00 8 2 6000 6000 No Model No Count 141 CR 102 CR 104 0.82 0 0 0 0.00 8 2 6000 6000 No Model No Count | 140 | CR 123 | CR 127 | 1.97 | 0 | 0 | Ö | Ö | 0.00 | 8 | 2 | 1800 | 1800 | No Model No Count | | 141 SRFCH END
0.89 0 0 0 0 0.000 8 2 6000 6000 No Model No Court 141 CR 102 CR 104 0.82 0 0 0 0 0.000 8 2 6000 6000 No Model No Court | 141 | CR 84 | SRFCH | 0.52 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800 | 1800 | No Model No Count | | 141 CR 102 CR 104 0.82 0 0 0 0.00 8 2 6000 6000 No Model No Count | 141 | SRFCH | END | 0.89 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 141 BUN CK 152 2.97 U U U U.00 8 2 6000 6000 No Model No Count | 141
141 | CR 102
BGN | CR 104
CR 132 | 0.82
2.97 | 0 | 0 | 0
0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | | | | | _ | _ | | | | | | | | | |---|--|--|--------------------------------------|---------------------------|--|-------------|------------------------|------------------------------|------------------|---|--|---------------------------------|--| | 143
145 | CR 132
SH 14 | END
CR 88 | 0.60
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 145
145 | SRFCH
CR 88 | SH 14
END | 0.52
0.53 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | 147
149 | CR 82
CR 124 | CR 82.5
SRFCH | 0.50
1.32 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149
149 | SH 14
CR 80 | CR 92 | 3.80
1.01 | 0 | Ŏ | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count | | 149 | CR 74 | CR 82
CR 76 | 1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count
No Model No Count | | 149
149 | CR 76
CR 78 | CR 78
CR 80 | 1.01
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149
149 | CR 84
CR 82 | CR 84.35
CR 84 | 0.33
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149
149 | CR 84.35
CR 102 | SH 14
CR 112 | 0.69
5.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149
149 | CR 92
CR 149.5 | CR 149.5
CR 100 | 2.76
1.29 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149 | CR 100 | CR 102 | 1.00 | 0 | 0 | 0 | Ō | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 149
149 | CR 112
SRFCH | CR 116
Y | 2.01
0.79 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 149
149 | Y | CR 128.5
CR 128.5 | 0.07
0.07 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000
6000 | No Model No Count
No Model No Count | | 150
150 | ERIE CL
BGN | CR 3
SH 66 | 0.30
0.49 | 1232 | 4820 | 86
0 | 340
0 | 0.18
0.00 | 6 | 2 | 13200
13200 | 13200
13200 | Use Count
No Model No Count | | 151
151 | CR 76
CR 74 | CR 84
CR 76 | 4.03
1.00 | 0 | 0 | 0 | 0 | 0.00
0.00 | 8 | 2 | 6000
1800 | 6000
1800 | No Model No Count No Model No Count | | 151 | CR 84 | SH 14 | 1.01 | 0 | 0 | Ö | Ō | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | 153
153 | CR 124
CR 76 | CR 128.5
SH 14 | 3.45
5.04 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | 153
153 | CR 104
CR 92 | SRFCH
STR | 4.41
3.35 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 153
153 | STR
CR 90 | CR 100
CR 92 | 1.31
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 153
153
153 | CR 100
BGN | CR 104
CR 124 | 2.04
0.77 | 0 | Ŏ | 0 | 0 | 0.00 | 8 8 | 2 | 6000 | 6000 | No Model No Count | | 153 | SRFCH | END | 0.62 | 0 | 0 | Ö | Ö | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 155
155 | SH 14
CR 92 | CR 92
CR 94 | 3.00
1.00 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 155
157 | CR 94
SRFCH | END
CR 82 | 1.88
1.01 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
1800 | 6000
1800 | No Model No Count
No Model No Count | | 157
250 | CR 92
CL | COLI
CR 29 | 1.07
0.50 | 0 | 0
240 | 0 | 0
30 | 0.00
0.02 | 8 7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count Derived | | 250 | RRX | CL | 0.45 | 111 | 220 | 13 | 30 | 0.02 | 7 7 | 2 | 6000 | 6000 | Use Count | | 250
250 | CR 27
CL | RRX
CL | 0.04
0.23 | 111
111 | 240 | 13
13 | 20
30 | 0.01
0.01 | 7 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 275
320 | CR 23
RRX | GATE
CR 16.5 | 0.20
0.55 | 0 | 950 | 0 | 0
120 | 0.00
0.04 | 6 | 2 | 1800
13200 | 1800
13200 | No Model No Count
No Model No Count Derived | | 320
320 | CL FREDERICK
SH 52 | RRX
STR | 0.44 | 231
231 | 950
950 | 30
30 | 120
120 | 0.04
0.04 | 6 | 2 | 13200
13200 | 13200
13200 | Use Count
Use Count | | 320
325 | CL FREDERICK
DORIS CI | RRX
CR 12 | 0.45
0.03 | 231 | 950
0 | 30
0 | 120
0 | 0.04
0.00 | 6 | 2 | 13200
13200 | 13200
13200 | Use Count
No Model No Count | | 340
360 | BONNIE CI
DELLA CT | CR 12
CR 12 | 0.02
0.02 | 0 | Ö | 0 | 0 | 0.00 | 6 | 2 | 13200
13200 | 13200
13200 | No Model No Count | | 378 | COMPO RD | CR 396 | 0.06 | 0 | 3770 | 0 | 110 | 0.13 | 3 | 2 | 14400 | 14400 | No Model No Count
Use Model | | 378
380 | CL EVANS
CR 61 | COMPO RD
STR | 0.14
2.83 | 0
109 | 0
120 | 0
45 | 0
50 | 0.00
0.01 | 3
4 | 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Count | | 380
380 | STR
CR 50 | SRFCH
CR 69 | 1.26
0.19 | 171
490 | 190
980 | 54
147 | 60
300 | 0.02
0.03 | 4 | 2 | 6000
14400 | 6000
14400 | Use Count
Use Count | | 380
382 | SRFCH
BGN | CR 50
CR118 | 0.32 | 114 | 230 | 39
0 | 80
0 | 0.01 | 8 | 2 | 14400
6000 | 14400
6000 | Use Count
No Model No Count | | 382
382 | CR 384
CR 118 | CR 124
CR 384 | 1.31
3.91 | 0 | Ö | 0 | 0 | 0.00
0.00 | 8 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count | | 384 | HOUSE | CR 382 | 3.25 | 0 | 0 | Ō | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count
No Model No Count | | 384
386 | CR 107
SH 76 | HOUSE
STR | 0.49
8.41 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 386
388 | STR
GATE | SH 34
END | 1.37
0.44 | 0
431 | 0
490 | 0
289 | 0
330 | 0.00
0.04 | 4 | 2 | 6000
6000 | 6000
6000 | No Model No Count
Use Count | | 388
388 | SH 37
CR 59 | CR 59
STR | 3.23
1.39 | 290
361 | 600
740 | 84
159 | 170
330 | 0.02
0.03 | 4 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Count | | 388
388 | CR 61
STR | GATE
CR 61 | 1.07
0.15 | 431
361 | 490 | 289
159 | 330
330 | 0.04 | 4 | 2 | 6000
14400 | 6000
14400 | Use Count | | 394 | CR 35 | URBDRY | 1.09 | 862 | 740
3240 | 164 | 620 | 0.11 | 3 | 2 | 14400 | 14400 | Use Count
Use Count | | 394
394 | CR 31
CL EVANS | RRX
CL EVANS | 0.03
0.06 | 0
289 | 4820
4820 | 0 | 400
400 | 0.17
0.17 | 3 | 2 | 14400
14400 | 14400
14400 | Use Model
Use Model | | 394
394 | URBDRY
CL | 1ST AVE / CL
SH 85 | 0.29
0.39 | 862 | 3240
700 | 164
0 | 620
50 | 0.11
0.03 | 3 | 2 | 14400
13200 | 14400
13200 | Use Count
Use Model | | 396
396 | CR 27.5
SH 60 | CL EVANS
CR 27.5 | 1.25
0.50 | 75
8437 | 5480
17540 | 0
1350 | 300
1270 | 0.46
0.66 | 3 | 2 | 6000
13200 | 6000
13200 | Use Model
Use Model | | 396
398 | CR 3150 | CR 33 | 0.60 | 0 | 0 | 0 | 0 | 0.00
0.01 | 3 7 | 2 | 14400 | 14400 | No Model No Count | | 398 | CR 63
CR 59 | SRFCH
CL | 0.68
1.00 | Ö | 580 | Ŏ | 160
240 | 0.02 | 7 | 2 | 14400
14400 | 14400
14400 | No Model No Count Derived
No Model No Count Derived | | 398
398 | CL KEENESBURG
CL | CR 59
CR 63 | 0.55
1.26 | 0
260 | 0
580 | 0
109 | 0
240 | 0.00
0.02 | 7 | 2 | 14400
14400 | 14400
14400 | No Model No Count
Use Count | | 398
398 | SRFCH
CL KEENESBURG | CL KEENESBURG
I-76 FRONTAGE RD | 0.39
1.57 | 119
119 | 290
170 | 68
68 | 160
100 | 0.01
0.01 | 7
7 | 2 | 14400
6000 | 14400
6000 | Use Count
Use Count | | 0 ST
0 ST | CR 41.5
SH 85 | CR 45
RRX | 1.50
0.05 | 256
0 | 530
0 | 72
0 | 150
0 | 0.02 | 4 | 2 | 13200
12000 | 13200
12000 | Use Count
No Model No Count | | 0 ST
0 ST | CR 41 | CR 41.5
CR 41 | 0.50
0.08 | 440
0 | 880 | 167
0 | 340
190 | 0.03
0.04 | 4 4 | 2 | 13200 | 13200
12000 | Use Count | | 0 ST | STR
CDS | SRFCH | 0.38 | 124 | 1050 | 86 | 100 | 0.01 | 4 | 2 | 12000
6000 | 6000 | Use Model Use Count | | 0 ST
0 ST | CR 45
SRFCH | CDS
CR 47 | 0.30
0.08 | 0 | 0
140 | 0
0 | 0
100 | 0.00
0.01 | 4 | 2 | 6000
13200 | 6000
13200 | No Model No Count
No Model No Count Derived | | 0 St
11TH AV | CR 64 | WYE | 4.29
0.69 | 0
2220 | 18860
7920 | 0
466 | 1160
810 | 0.26
0.22 | 3 | 4 | 36000
18000 | 36000
18000 | Use Model
Use Model | | 11TH AV | CR 64
WYE | WYE
CR 66 | 0.23 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 18000
13200 | 18000
13200 | No Model No Count
No Model No Count | | 14TH ST
14TH
ST | SH 85 BR | RRX
SPLIT | 0.12
0.11 | 0 | 0 | 0 | 0 | 0.00
0.00 | 7 7 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | 14TH ST | RRX | CL FT LUPTON | 0.17 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 6000 | 6000 | No Model No Count | | 14TH ST
168TH AV | SPLIT
CR 17 | CL
STR | 0.11
3.27 | 0 | 0
13550 | 0 | 0
790 | 0.00
0.35 | 7
6 | 2 | 6000
19200 | 6000
19200 | No Model No Count
Use Model | | 168TH AV
168TH AV | CL
CL BROOMFIELD | CR 17
RRX | 0.98
1.03 | 3121
0 | 14420
18400 | 437
0 | 810
1370 | 0.38
0.51 | 6 | 2 | 19200
18000 | 19200
18000 | Use Model
Use Model | | 168TH AV
168TH AV | SH 7
RRX | CL BROOMFIELD
STR | 0.78
0.62 | 0 | 22430
17140 | 0 | 2460
1020 | 0.62
0.45 | 6 | 2 | 18000
19200 | 18000
19200 | Use Model
Use Model | | 168TH AV
168TH AV | STR | CR 15 | 0.35
0.28 | 0 | 12730 | 0 | 710 | 0.33 | 6 | 2 | 19200 | 19200 | Use Model | | 168TH AV | STR
STR | CL
STR | 0.84 | 0 | 17230
17490 | 0 | 1140
1150 | 0.45
0.49 | 6 | 2 | 19200
18000 | 19200
18000 | Use Model
Use Model | | 168TH AV
168TH AV | STR
RRX | SYSCH
CL | 1.24
0.28 | 2624
0 | 5160
3720 | 367
0 | 720
230 | 0.18
0.13 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | 168TH AV
168TH AV | CL
SH 76 | STR SH 76
RRX | 0.58
0.16 | 0 | 10720
7760 | 0 | 720
620 | 0.30
0.27 | 7 | 2 | 18000
14400 | 18000
14400 | Use Model
Use Model | | 168TH AV
168TH AV | CL
SYSCH | CR 39
CR 45 | 0.50
0.50 | 3448
2624 | 3720
5160 | 483
367 | 230
720 | 0.13
0.18 | 7 7 | 2 | 14400 | 14400 | Use Model | | 168TH AV | SYSCH | SRFCH | 0.48 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count No Model No Count | | 168TH AV | CR 47
STR | SYSCH
ADAMS CR 224 | 0.23
0.01 | 0 | 0 | 0
0 | 0 | 0.00 | 7 | 2 | 14400
14400 | 14400
14400 | No Model No Count
No Model No Count | | 168TH AV | | CR 43.6 | 1.28 | 0 | 2020
1080 | 0 | 200
130 | 0.08
0.04 | 4 | 2 | 13200
13200 | 13200
13200 | Use Model
Use Model | | 16TH ST | CL
CR 43.6 | | 0.41 | | | | | | | - | | | | | 16TH ST
16TH ST
175TH AV | CR 43.6
BGN | CR 45
CR 7 | 0.41
0.41
0.14 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 13200 | 13200
3000 | No Model No Count No Model No Count | | 16TH ST
16TH ST
175TH AV
17TH ST
18TH ST | CR 43.6
BGN
CR 43.3
CR 43.6 | CR 45
CR 7
CR 43.45
CR 45 | 0.41
0.14
0.47 | 0
0
724 | 0
0
3960 | 0 | 0
350 | 0.00
0.15 | 4 | 2 2 | 13200
3000
13200 | 3000
13200 | No Model No Count
Use Model | | 16TH ST
16TH ST
175TH AV
17TH ST
18TH ST
18TH ST
18TH ST
18TH ST | CR 43.6
BGN
CR 43.3
CR 43.6
WYE
SH 34 | CR 45
CR 7
CR 43.45
CR 45
CR 43.6
WYE | 0.41
0.14
0.47
0.47
0.04 | 0
0
724
784
0 | 0
0
3960
4920
4920 | 0
0
0 | 0
350
490
490 | 0.00
0.15
0.19
0.19 | 4
4
4
4 | 2 | 13200
3000
13200
13200
13200 | 3000
13200
13200
13200 | No Model No Count
Use Model
Use Model
Use Model | | 16TH ST
16TH ST
175TH AV
17TH ST
18TH ST
18TH ST | CR 43.6
BGN
CR 43.3
CR 43.6
WYE | CR 45
CR 7
CR 43.45
CR 45
CR 43.6 | 0.41
0.14
0.47
0.47 | 0
0
724
784 | 0
0
3960
4920
4920
2830
2830 | 0
0
0 | 0
350
490 | 0.00
0.15
0.19 | 4 4 4 | 2
2
2
2
2
2
2 | 13200
3000
13200
13200 | 3000
13200
13200 | No Model No Count
Use Model
Use Model | | 197TH WY
19TH ST | 195TH AV
CR 41.5 | 195TH AV
CR 41.6 | 0.49 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 1800
2 13200 | 1800
13200 | No Model No Count
No Model No Count | |---|---|---|--|----------------------------|---|-----------------------|---------------------------------------|--|-----------------------|---|--|---| | 1ST AV | MAIN ST | MILTON ST | 0.07 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 1800 | 1800 | No Model No Count | | 20TH ST
20TH ST | CL GREELEY
CR 43 | CR 43
SH 34 BR | 0.25
0.38 | 0 | 0 | 0 | 0 | 0.01 | 4 | 2 13200
2 13200 | 13200
13200 | Use Model
No Model No Count | | 20TH ST
21ST AV | SH 34 BR
CI | END
RRX | 0.23 | 57
0 | 70
2570 | 0 | 90 | 0.01 | 4 | 2 6000 | 6000
12000 | Use Count
Use Model | | 21ST AV | CR 62.25 | END
CD 63 3E | 0.27 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 12000 | 12000 | No Model No Count | | 21ST AV
24TH ST | RRX
CL GREELEY | CR 62.25
SH 34 BR | 0.01
0.39 | 0 | 630 | 0 | 90
40 | 0.11
0.02 | 4 | 2 12000
2 13200 | 12000
13200 | Use Model
Use Model | | 24TH ST
24TH ST | CR 45
SH 34 BR | CR 45.50
CR 45 | 0.49
0.11 | 0 | 60
170 | 0 | 0
10 | 0.01
0.01 | 4 | 2 6000
2 6000 | 6000
6000 | Use Model
Use Model | | 25TH AV
25TH AV | STR
CR 62.25 | CR 64
STR | 0.22
0.57 | 0 | 2190 | 0 | 100
0 | 0.08 | 3 | 2 13200
2 13200 | 13200
13200 | Use Model | | 25TH AV CT | CR 62.90 | CR 62.95 | 0.12 | 0 | Ö | Ö | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count
No Model No Count | | 25TH ST AL
26TH AV | END
M ST | 25 TH ST
N ST | 0.12
0.12 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 12000
2 3000 | 12000
3000 | No Model No Count
No Model No Count | | 28TH AV | CR 62.25 | END | 0.09 | 0 | 0 | 0 | 0 | 0.00 | 3 8 | 2 6000 | 6000 | No Model No Count | | 2ND AV
2ND ST | MAIN ST
STOREY | MILTON ST
CR 73.5 | 0.07 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 2ND ST
2ND ST | 3RD AV
GRANDVIEW | 5TH AV
PACIFIC | 0.14
0.14 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 33AV CT | 35TH ST
35TH ST | CDS
34TH ST | 0.16
0.11 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | 34TH AV
34TH AV CT | 34TH ST | CDS | 0.07 | 0 | 0 | Ö | Ö | 0.00 | 3 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | 34TH AV PL
34TH ST | 34TH ST
35TH AV | CDS
34TH AV | 0.06 | 0
554 | 970 | 0
28 | 0
50 | 0.00
0.16 | 3 | 2 3000
2 3000 | 3000
3000 | No Model No Count
Use Count | | 34TH ST
34TH ST | 34TH AV
CDS | 33 AVCT
34TH AV | 0.13 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | 35TH AV | CR 62.25 | RRX | 0.05 | 0 | 21250 | 0 | 1520 | 0.28 | 3 | 2 3000
4 38400 | 3000
38400 | No Model No Count
Use Model | | 35TH ST
37TH ST | 35TH AV
CL (GREELEY) | 33RD AV
CR 25 | 0.27
0.49 | 485 | 850
18420 | 19
0 | 30
920 | 0.14 | 3 | 2 3000
2 19200 | 3000
19200 | Use Count
Use Model | | 3RD AV
3RD AV | SH 14
B ST | CR 82.5
SH 14 | 0.21
0.14 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 3RD AV | BGN | B ST | 0.06 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800 | 1800 | No Model No Count | | 3RD AV
3RD AV | SH 14
3RD ST | CR 82.5
6TH ST | 0.29
0.21 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 3RD AV
3RD AV | SH 37
LEE ST | 3RD ST
MILTON ST | 0.14
0.21 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 3000
2 1800 | 3000
1800 | No Model No Count | | 3RD AV | MILTON ST | BARR | 0.04 | 0 | 0 | Ö | 0 | 0.00 | 8 | 2 1800 | 1800 | No Model No Count
No Model No Count | | 3RD ST
3RD ST | SRFCH
WELKER AV | CL
RRX | 1.47
0.16 | 0 | 7800
6930 | 0 | 450
420 | 0.30
0.26 | 5
5 | 2 13200
2 13200 | 13200
13200 | Use Model
Use Model | | 3RD ST
3RD ST | SCL MEAD
RRX | WELKER AV
SRFCH | 0.15
0.02 | 1788
0 | 6260 | 0 | 340
420 | 0.22
0.26 | 5 5 | 2 14400
2 13200 | 14400
13200 | Use Model
Use Model | | 3RD ST | 3RD AV | 6TH AV | 0.22 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 3000 | 3000 | No Model No Count | | 3RD ST
3RD ST | 6TH AV
RRX | RRX
7TH AV | 0.03 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | 3RD ST
3RD ST | GRANDVIEW | PACIFIC
MAIN ST | 0.14
0.06 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800 | 1800
1800 | No Model No Count | | 44TH AV DR | PACIFIC
CR 396 | CR 52 | 0.29 | 0 | <u> </u> | Ö | Ö | 0.00 | 3 | 2 1800
2 1800 | 1800 | No Model No Count
No Model No Count | | 46TH AV
47TH AV | CR 33.20
CR 396 | CR 52
CR 52 | 0.28 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 1800
2 13200 | 1800
13200 | No Model No Count
No Model No Count | | 47TH AV
4TH AV | CL
3RD ST | SH 392
6TH ST | 0.48 | 1868 | 6680 | 318 | 1140
10 | 0.23 | 3 | 2 14400
2 3000 | 14400
3000 | Use Count Use Count | | 4TH AV | 2ND ST | 3RD ST | 0.07 | 97 | 0 | 0 | 0 | 0.00 | 4 | 2 1800 | 1800 | No Model No Count | | 4TH AV
4TH ST | LEE
CL | BARR
SPLIT | 0.24 | 0 | 0
11240 | 0 | 0
530 | 0.00
0.31 | 8 | 2 1800
2 18000 | 1800
18000 | No Model No Count
Use Model | | 4TH ST
4TH ST | SPLIT
3RD AV | CL GREELEY
6TH AV | 0.06
0.22 | 0 | 11240 | 0 | 530
0 | 0.31
0.00 | 3 | 2 18000
2 1800 | 18000
1800 | Use Model
No Model No Count | | 54 EAST | BGN |
SURFCH | 0.16 | 811 | 2000 | 97 | 240 | 0.07 | 4 | 2 14400 | 14400 | Use Count | | 54 WEST
54TH ST RD | CR 54
CR 396 | END
ALTO WY | 0.21
0.55 | 0 | 3770 | 0 | 0
110 | 0.00
0.13 | 3 | 2 6000
2 14400 | 6000
14400 | No Model No Count
Use Model | | 5TH AV
5TH AV | SH 37
LEE ST | 5TH ST
SH 14 | 0.29
0.50 | 0
136 | 310 | 22 | 0
50 | 0.00
0.01 | 4
8 | 2 1800
2 14400 | 1800
14400 | No Model No Count
Use Count | | 5TH ST | US 85 | CL | 0.06 | 0 | 1170 | 0 | 80 | 0.20 | 2 | 2 3000 | 3000 | No Model No Count Derived | | 5TH ST
5TH ST | CL
3RD AV | WALL ST
4TH AV | 0.04 | 722
0 | 0 | 51
0 | 80
0 | 0.20 | 4 | 2 3000
2 1800 | 3000
1800 | Use Count
No Model No Count | | 5TH ST
6TH AV | 4TH AV
CR 64 | END
BARR | 0.07
0.45 | 731 | 0
820 | 0
139 | 0
160 | 0.00
0.14 | 4 | 2 3000
2 3000 | 3000
3000 | No Model No Count
Use Count | | 6TH AV | STR
6TH AV | CL
WYE | 0.31
0.64 | 0 | 0 | 0 | 0
20 | 0.00
0.01 | 4 | 2 12000
2 6000 | 12000 | No Model No Count | | 6TH AV | 3RD ST | 6TH | 0.21 | 52
77 | 90 | 12 | 10 | 0.02 | 4 | 2 3000 | 6000
3000 | Use Count
Use Count | | 6TH AV
6TH AV | WYE
WYF | CR 57
CR 57 | 0.05 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 6000
2 6000 | 6000
6000 | No Model No Count
No Model No Count | | 6TH ST | 3RD AV | 6TH AV | 0.21 | 0 | 0 | 0 | Ö | 0.00 | 4 | 2 1800 | 1800 | No Model No Count | | 6TH ST
7TH AV | BGN
CR 64 | 3RD AV
SRFCH | 0.15
0.30 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 1800
2 3000 | 1800
3000 | No Model No Count
No Model No Count | | 7TH AV
7TH AV | CR 64 | END
SH 85 STR OVRHD | 0.16 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | 7TH AV | STR | CR 64 | 0.18 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 3000 | 3000 | No Model No Count | | 7TH AV
7TH AV | STR
SRFCH | STR
END | 0.02
0.17 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | 7TH AV
83RD AV | CR 55
SH 34 BR | END
CL GREELEY | 0.28
1.09 | 0 | 0
17890 | 0 | 0
1300 | 0.00
0.39 | 3 | 2 1800
2 22800 | 1800
22800 | No Model No Count
Use Model | | 83RD AV | STR | CR 64 | 0.44 | 0 | 17980 | 0 | 1270 | 0.39 | 3 | 2 22800 | 22800 | Use Model | | 95TH AV
95TH AV | SPLIT
CR 54 | URBDRY
SPLIT | 0.48
0.50 | 0
147 | 3280
3280 | 0
24 | 150
150 | 0.09
0.23 | 3 | 2 18000
2 7200 | 18000
7200 | Use Model
Use Model | | ABEYTA ST
ACADIA CT | WILLIAMS
CR 5235 | END
END | 0.05
0.04 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 3000
2 3000 | 3000
3000 | No Model No Count
No Model No Count | | ACADIA ST | CR 5235 | CR 5240 | 0.11 | 0 | 0 | 0 | 0 | 0.00 | 3 8 | 2 3000 | 3000 | No Model No Count | | AGATE ST
AGATE ST | GRANITE
FLINT | FLINT AV
GATE | 0.15
0.09 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | ALGONOUIN DR
ALLEY | BGN
BGN | CR 15
CR 37.5 | 0.45
0.40 | 845
0 | 1480
0 | 68
0 | 120
0 | 0.25
0.00 | 3 | 2 3000
2 6000 | 3000
6000 | Use Count
No Model No Count | | ALTO WY
ANNE PL | CR 396
CR 10.6 | CABALLO
FND | 0.23
0.16 | 75
0 | 130 | 10 | 20
0 | 0.02
0.00 | 3 | 2 3000
2 3000 | 3000
3000 | Use Count | | ANTELOPE LANE | CDS | CR 17 | 0.19 | 0 | 0 | Ö | Ö | 0.00 | 8 | 2 1800 | 1800 | No Model No Count
No Model No Count | | APACHE RD
APACHE RD | CR 20
HOPI TRAIL | DELCOMIN
HOPI TRAIL | 0.58
0.27 | 114
0 | 0 | 16
0 | 30
0 | 0.04 | 3 | 2 3000
2 3000 | 3000
3000 | Use Count
No Model No Count | | APALOSA AV
APPALOOSA AV | CR 6.3
CR 6.5 | CR 6.5
CR 8 | 0.20
0.50 | 0 | 0 | 0 | 0 | 0.00 | 7 7 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | APPALOOSA LN | CR 41 | CR 41.05 | 0.05 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800 | 1800 | No Model No Count | | ARABIAN AV
ARADO WY | BGN
BGN | CR 8
CR 3165 | 0.38 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 1800
2 3000 | 1800
3000 | No Model No Count
No Model No Count | | ARGIE ST
ARIKAREE RD | CDS
COMMANCHE CT | CR 3571
AL | 0.10
0.16 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 1800
2 3000 | 1800
3000 | No Model No Count
No Model No Count | | ASH ST | SH 85 | CL GILCREST | 0.30 | 0 | Ŏ | 0 | 0 | 0.00 | 5 | 2 13200 | 13200 | No Model No Count | | ASHTON RD
ASPEN AV | CENTER DR
PIKES PEAK ST | CR 26
LONGS PEAK ST | 0.24
0.37 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 3000
2 1800 | 3000
1800 | No Model No Count
No Model No Count | | ASPEN CT
ATLANTA ST | ASPEN AV
CR 136.3 | END
CR 136.2 | 0.05
0.12 | 0 | 0 | 0 | 0 | 0.00 | 6
8 | 2 1800
2 1800 | 1800
1800 | No Model No Count
No Model No Count | | AVERY DRIVE | CR 43 | END | 0.28 | 0 | Ů | 0 | 0 | 0.00 | 2 | 2 1800 | 1800 | No Model No Count | | | BGN
CR 3455 | CR 52.3
CDS | 0.03
0.12 | 0 | 0 | 0 | 0 | 0.00 | 3
4 | 2 3000
2 1800 | 3000
1800 | No Model No Count
No Model No Count | | BAD LANDS CT
BADMINTON RD | | CDS | 0.23 | 0 | 0 | 0 | 0 | 0.00 | 4
7 | 2 1800
2 6000 | 1800
6000 | No Model No Count
No Model No Count | | BADMINTON RD
BADMINTON RD | CR 3455 | | | | 240 | 0 | 30 | 0.01 | 4 | 2 12000 | 12000 | Use Model | | BADMINTON RD BADMINTON RD BAILEY DR BALSAM AV | CR 4
SH 34 BR | END
CR 58.5 | 0.49
0.25 | 0 | 310 | | | | | | | | | BADMINTON RD BADMINTON RD BAILEY DR BALSAM AV BALSAM AV BARBARA CI | CR 4
SH 34 BR
CR 58
BGN | END
CR 58.5
SH 34 BR
CR 12 | 0.25
0.25
0.03 | 0 | 2550
0 | 0 | 210
0 | 0.11
0.00 | 6 | 2 12000
2 13200 | 12000
13200 | Use Model
No Model No Count | | BADMINTON RD BADMINTON RD BAILEY DR BALSAM AV BALSAM AV BARBARA CI BASELINE RD | CR 4 SH 34 BR CR 58 BGN CL | END
CR 58.5
SH 34 BR
CR 12
CL | 0.25
0.25
0.03
0.08 | 0
0
0 | 2550
0
4930 | 0 | 230 | 0.00
0.14 | | 2 13200
2 18000 | 13200
18000 | No Model No Count
Use Model | | BADMINTON RD BADMINTON RD BAILEY DR BALSAM AV BALSAM AV BASELINE RD BASELINE RD BASELINE RD | CR 4 SH 34 BR CR 58 BGN CL SH 85 SH 85 | END CR 58.5 SH 34 BR CR 12 CL ADAMS CR 215 ADAMS CR 215 | 0.25
0.25
0.03
0.08
2.18
0.25 | 0
0
0
0
0 | 2550
0
4930
13100
15470 | 0
0
0
0 | 0
230
970
1260 | 0.00
0.14
0.34
0.40 | 6
7 | 2 13200
2 18000
2 19200
2 19200 | 13200
18000
19200
19200 | No Model No Count Use Model Use Model Use Model Use Model | | BADMINTON RD BADMINTON RD BALLEY DR BALSAM AV BALSAM AV BASELINE RD BASELINE RD BASELINE RD BASELINE RD BASELINE RD BASELINE RD | CR 4 SH 34 BR CR 58 BGN CL SH 85 SH 85 ADAMS CR 215 STR | END
CR 58.5
SH 34 BR
CR 12
CL
ADAMS CR 215
ADAMS CR 215
STR
CL | 0.25
0.25
0.03
0.08
2.18
0.25
2.14
0.44 | 0
0
0
0
0
0 | 2550
0
4930
13100
15470
8850
4930 | 0
0
0
0
0 | 0
230
970
1260
600
230 | 0.00
0.14
0.34
0.40
0.23
0.14 | 6
7
7
7
7 | 2 13200
2 18000
2 19200
2 19200
2 19200
2 19200
2 18000 | 13200
18000
19200
19200
19200
18000 | No Model No Count Use Model Use Model Use Model Use Model Use Model Use Model | | BADMINTON RD BADMINTON RD BAILEY DR BALSAM AV BARSAM AV BARBARA CI BASELINE RD BASELINE RD BASELINE RD BASELINE RD | CR 4 SH 34 BR CR 58 BGN CL SH 85 SH 85 ADAMS CR 215 | END
CR 58.5
SH 34 BR
CR 12
CL
ADAMS CR 215
ADAMS CR 215
STR
CL
CR 58.1 | 0.25
0.25
0.03
0.08
2.18
0.25
2.14 | 0
0
0
0
0 | 310
2550
0
4930
13100
15470
8850
4930
0 | 0
0
0
0 | 970
1260
600 | 0.00
0.14
0.34
0.40
0.23 | 6
7
7 | 2 13200
2 18000
2 19200
2 19200
2 19200 | 13200
18000
19200
19200
19200 | No Model No Count Use Model Use Model Use Model Use Model Use Model | | | Count el |
--|--| | BERCH SECRED AV FOMEL AV 0.00 | el Count Cou | | RECEIPT 19 | Count | | BILESTON BIG SERIO D. 66 Q. 0 D. | Count | | REVER DETAIL CR. 984 | Count | | BACK ILLES BIOL LORGETER MAYE 0.065 0.00 0.00 0.2 2.000 3000 Mo Model | Count | | BLAKE CR. 48.5 FID. 0.16 0 8 0 0 0.00 3 2 2 2 2 2 2 2 2 2 | Count tt Count | | SHIFT CORD CHRONE PART CARPOR C | Count | | RUILLYAND RUIL | Count | | BOULEVARIO A SECRODIAL THIRD AW 0.1.2 | Count | | BOULEVARD A | Count Count Count Count Count Count t Count | | BOURLAND RANDOM N. W. WIGS 1 | Count Count Count Count tount Count | | SOULYANDE HIRDAD AV | Count Count int Count | | BRAYAND POINT END C. 12.75 0.28 99 180 4 10 0.03 3 2 3000 3000 10 10 10 10 10 | nt Count | | RRIFICATION REPORT CONTROL C | Count | | BROADWAY CR. 136.2 CR. 136. | Count | | BRUEERD PEARVIEW CDS 0.14 | Count
Count
Count
Count
Count | | BRYCE BIG BEND FND 0.03 0 0 0 0 0 0 0 0 0 | Count
Count
Count | | BULFELO BD CR1 | Count | | BUITEDR LOWER RIDGER D LOYER RIDGER D LOYER RIDGER D LOYER RIGGER RIGGE | | | BURGHLEY CT CR 2454 | Count | | BUTTE DR IOWER HIGHLAND IDAHO CREEK PY 0.21 0.00 0.00 6 2 3000 3000 No Model N | Count | | STITE OR LOWER RIDGE RD LOWER HIGHLAND 0.07 | Count
Count | | C ST CLGRELEY STR 0.27 0 0 0 0 0.000 3 2 60000 6000 No Model N C ST CLGRELEY CR 29.4 0.23 0 0 0 0 0.000 3 2 13200 No Model N C ST CLGRELEY CLGRELEY 0.11 0 0 0 0 0 0.000 3 2 13200 No Model N C ST R SON CLGRELEY 0.090 0 0 0 0 0 0.000 3 2 13200 No Model N C ST R SON CLGRELEY 0.090 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Count | | C ST | Count | | CST STR CR31 0.06 0 0 0 0 0.00 3 2 6000 6000 No Model N CST CR41 CR41.50 1.51 242 2330 41 210 0.09 4 2 13200 13200 Use Mo CST CR41 CR41.50 0.51 242 2350 48 230 0.10 4 2 12000 12000 Use Mo CABALLO RD LG ALTO WY 0.36 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CABALLO RD LG SRFCH 0.01 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CABALLO RD LG SRFCH 0.01 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CABALLO RD LG SRFCH 0.01 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CABALLO RD LG SRFCH 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | CST CR 41 CR 41.50 0.51 242 2500 48 230 0.10 4 2 12000 12000 Use Mo CABALLO RD 1G ALTO WY 0.36 0 0 0 0 0 0.00 3 2 3000 No dode IN CABALLO RD 1G SRFCH 0.01 0 0 0 0 0.00 3 2 1800 1800 No Model N CABALLO RD 1G SRFCH 0.01 0 0 0 0 0 0.00 3 2 1800 1800 No Model N CABALLO TR COYOTE TR END 0.23 0 0 0 0 0 0 0.00 3 2 1800 1800 No Model N CABALLO TR GRANIERO RD COYOTE TR END 0.23 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CABALLO TR GRANIERO RD COYOTE TR END 0.23 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CACTUS DR CR 22 CR 11 0.45 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CARLON RD CR 22 CR 11 0.45 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N CARLON RD CR 24 CR 11 0.45 0 0 0 0 0 0 0.00 5 2 3000 3000 No Model N CARLON TO CREEK BIG BEND END 0.05 0 0 0 0 0 0.00 6 2 3000 3000 No Model N CARLON ST VICKORY AVE COLUMBUS AVE 0.19 0 0 0 0 0 0.00 6 2 3000 3000 No Model N CARLON ST VICKORY AVE COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 1800 1800 No Model N CARLON ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 1800 1800 No Model N CARLON TO CARLON TO CREEK BIG BEND CR 3.5 0.04 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0 0.00 7 2 1800 1800 No Model N CARLON COLUMBUS AVE MIRIAM AVE D. CARLON COLUMBUS AVE D. CARLON COLUMBUS AVE D. CARLON COLUMBUS AVE D. CARLON COLUMBUS AVE D. CARLON COLUMBU | Count | | CABALLO RD | el | | CABALLO TR GRANIERO RD COYOTE TR 0.06 0 0 0 0 0.00 3 2 3000 3000 No Model N CACTUS DR CACTUS DR CR 42 CR 11 0.45 0 0 0 0 0 0.00 5 2 3000 3000 No Model N CANYON CREEK BIG BEND END 0.05 0 0 0 0 0.00 6 2 3000 3000 No Model N CARLIN ST VICKORY AVE COLUMBUS AVE 0.19 0 0 0 0 0.00 6 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLIN ST CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 1 2 2 1800 1800 No Model N CARLIN ST S | Count | | CANYON CREEK BIG BEND END 0.05 0 0 0 0 0.00 6 2 3000 3000 No Model N | Count | | CARLIN ST COLUMBUS AVE MIRIAM AVE 0.28 0 0 0 0 0 0.00 2 2 1800 1800 No Model N CARLISON COURT CDS CR 84 0.44 0 0 0 0 0 0.00 6 2 3000 3000 No Model N CARLISON COURT CDS CR 84 0.44 0 0 0 0 0 0.00 1 2 1800 1800 No Model N CARLISON COURT CDS CR 84 0.44 0 0 0 0 0 0.00 1 2 1800 1800 No Model N CARLISON COURT CDS CR 84 0.44 0 0 0 0 0 0 0.00 1 2 1800 1800 No Model N CARLINE AV SRECH CR 6 0.14 0 0 0 0 0 0.00 6 2 1800 1800 No Model N CARLINE AV SRECH CR 6 0.36 360 870 0 0 0.15 6 2 3000 3000 Use CO CARLINE AV CR 9.1 | Count | | CARSON COURT CDS CR 84 0.44 0 0 0 0 0 0.00 1 2 1800 1800 NO Model N CARDUNE AV SRECH CR 6. 0.14 0 0 0 0 0 0.00 1 2 1800 NO Model N CARDUNE AV
SRECH CR 6. 0.36 360 870 0 0 0.15 6 2 1800 1800 NO Model N CARDUNE AV SRECH CR 6. 0.36 360 870 0 0 0.15 6 2 3000 3000 Use CO CARDUNE AV CR 14. SRECH 0.18 95 250 0 0 0 0.02 6 2 6000 6000 Use CO CARDUNE AV CR 31 CR 33 0.99 0 0 0 0 0 0.00 7 2 1800 1800 NO Model N CARDUNE AV CR 31 CR 33 0.99 0 0 0 0 0 0.00 7 2 1800 1800 NO Model N CASA GRND DR CR 52.15 CR 52.25 0.09 0 0 0 0 0 0.00 7 2 1800 1800 NO Model N CASA GRND DR CR 52.15 CR 52.25 0.09 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL NE CO CASA GRND DR CR 52.15 CR 52.25 0.09 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N CASLER BARR CR 31.95 0.80 0 0 0 0 0 0.00 7 2 1800 1800 NO MODEL N CASLER AV PATRICK ST FLINT ST 0.17 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV PATRICK ST FLINT ST 0.17 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0 0.00 7 2 3000 3000 NO MODEL N CASLER AV JADE ST END 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Count | | CAROLINE AV SRECH CR 6 0.36 360 870 0 0 0.15 6 2 3000 3000 Use Co. | Count | | CAROLINE AV | nt | | CASA GRND DR CR 52.15 CR 52.25 C.0.99 O O O O O.0.00 3 2 3000 3000 No Model N | Count | | CASLER AV PATRICK ST FLINT ST 0.17 0 0 0 0 0.00 7 2 3000 3000 No Model N CASLER AV FLINT ST JADE ST 0.17 0 0 0 0 0.00 7 2 3000 3000 No Model N CASLER AV FLINT ST JADE ST 0.17 0 0 0 0 0.00 7 2 3000 3000 No Model N CASLER AV JADE ST END 0.02 0 0 0 0 0.00 7 2 3000 3000 No Model N CASLER AV JADE ST END 0.02 0 0 0 0 0.00 7 2 3000 3000 No Model N CATLAW CT NMOOR CDS 0.15 0 0 0 0 0.00 5 2 3000 3000 No Model N CATHY LIN CR 10.6 END 0.16 0 0 0 0 0.00 6 2 3000 3000 No Model N CEDAR CT CR 74 CDS 0.07 0 0 0 0 0.00 6 2 3000 3000 No Model N CEDAR CT CR 74 CDS 0.07 0 0 0 0 0.00 5 2 3000 3000 No Model N CELESTE LANE CDS 0.07 0 0 0 0 0.00 5 2 14400 14400 No Model N CELESTE LANE CDS SH 60 0.31 0 0 0 0 0.00 5 2 14400 14400 No Model N CHALLENGER RANCH CDS CR 15.5 0.40 0 0 0 0 0.00 3 2 1800 1800 No Model N CHALLENGER RANCH CDS CR 15.5 0.40 0 0 0 0 0.00 3 2 1800 1800 No Model N CHATGGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use CO CHATGGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use CO CHATGGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use CO | Count | | CASLER AV JADE ST END 0.02 0 0 0 0 0.00 7 2 3000 3000 No Model N CATLAW CT NMOOR CDS 0.15 0 0 0 0 0.00 7 2 3000 3000 No Model N CATLAW CT NMOOR CDS 0.15 0 0 0 0 0.00 5 2 3000 3000 No Model N CATLAW CT NMOOR CT CR 74 CDS 0.07 0 0 0 0 0.00 6 2 3000 3000 No Model N CEDAR CT CR 74 CDS 0.07 0 0 0 0 0.00 6 2 3000 3000 No Model N CEDAR CT CR 74 CDS 0.07 0 0 0 0 0.00 5 2 3000 3000 No Model N CELESTE LANE CDS SH 60 0.31 0 0 0 0 0.00 5 2 14400 14400 No Model N CELESTE LANE CDS SH 60 0.31 0 0 0 0 0.00 5 2 14400 14400 No Model N CELESTE CR PERAL HOWLETT PEARL HOWLETT C 22 0 0 0 0 0 0.00 5 2 14400 14400 No Model N CHALLENGER RANCH CDS CR 15.5 0.40 0 0 0 0 0.00 3 2 1800 3000 No Model N CHALLENGER RANCH CDS CR 15.5 0.40 0 0 0 0 0.00 3 2 1800 1800 No Model N CHATOGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use CO CHATOGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use CO | Count | | CATHY IN | Count | | CEISTE LANE CDS SH 60 0.31 0 0 0 0.00 5 2 14400 14400 No Model N CENTER DR PERABL HOWLETT 0.22 0 0 0 0.00 6 2 3000 3000 No Model N CHAILENGER RANCH CDS CR 15.5 0.40 0 0 0 0.00 3 2 1800 1800 No Model N CHATOGA AV CR 25 CL 0.38 212 480 53 120 0.02 8 2 14400 14400 Use Co CHATOGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use Co CHATOGA AV CL CR 122 0.15 0 0 0 0.00 8 2 14400 14400 No Model N | Count | | CHAILENGER RANCH CDS CR 15.5 0.40 0 0 0 0.00 3 2 1800 1800 No Model N CHATOGA AV CR 87 CL 0.38 212 480 53 120 0.02 8 2 14400 14400 Use Co CHATOGA AV CL RAIROAD AV 0.46 212 480 53 120 0.02 8 2 14400 14400 Use Co CHATOGA AV CL CR 122 0.15 0 0 0 0.00 8 2 14400 14400 No Model N | Count | | CHATOGA AV CL RAIRROAD AV 0.46 212 4890 53 120 0.02 8 2 14400 14400 Uses CO CHATOGA AV CL CR 122 0.15 0 0 0 0 0.00 8 2 14400 14400 No Model N | Count | | | nt | | CHATOGA AV RR AV CL 0.18 0 0 0 0 0.00 8 2 14400 14400 No Model N | | | CHERRY AV CL GRELEY SH 34 0.68 0 100 0 10 0.00 4 2 13200 13200 Use Model N CHESTNUTAV CR 58 END 0.12 0 0 0 0.00 4 2 6000 6000 No Model N | | | CHEYENNEAV CL CR76 0.16 1004 1390 70 100 0.05 2 2 14400 14400 Use CO CHOLLACT NMOOR CDS 0.12 0 0 0 0 0.00 5 2 3000 3000 No Model N | count Count | | CHRISTIAN ST CAROLI MARY 0.06 0 0 0 0.00 6 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0.00 3 2 3000 3000 No Model N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0 0.00 3 2 3000 3000 NO MODEL N (NDVPL CDS GRANDVIEW DR 0.08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Count
Count | | CIRCLE DR CR79 CR136 0.54 0 0 0 0.000 8 2 1800 1800 NoModel N
CLARALEST CDS CR37 0.45 68 90 9 10 0.02 7 2 3000 3000 Use CO | Count | | CLEMMA CT BGN CR 12 0.02 0 0 0 0.00 6 2 13200 13200 No Model N
CLIFERD BGN CR 70 0.19 50 130 4 10 0.02 1 2 3000 3000 Use Co | Count
nt | | COALBANK RD CR 31 CDS 0.24 35 6140 6 400 0.21 1 2 14400 14400 Use Mo COLEMAN AV CR 31 CR 31.95 0.91 0 0 0 0.00 7 2 1800 1800 No Model N | el | | COLEMAN AVE CR33 FLINT ST 0.17 0 0 0 0 0.00 7 2 3000 3000 No Model N
COLEMAN AVE FLINT ST JADE ST 0.17 0 0 0 0 0.00 7 2 3000 3000 No Model N | Count
Count | | COLEMAN AVE JADEST END 0.03 0 0 0 0 0.00 7 2 3000 3000 No Model N COLEMAN AVE JADEST END 0.3 0 0 0 0 0.00 7 2 3000 38400 Use Mo | Count | | COLI RD 5H52 STR 0.31 0 15210 0 750 0.21 6 4 36000 36000 Use MO COLI RD STR BOULDER N COLI 2.86 3997 4070 240 210 0.14 5 2 14400 14400 Use MO | el | | COLL RD CR 20.5 STR 0.96 0 12390 0 580 0.17 6 4 38400 38400 Use Mo
COLL RD RRX C LLONGMONT 0.04 0 10350 0 500 0.14 6 4 36000 36000 Use Mo | el
el | | COLI RD STR RRX 0.04 0 10350 0 500 0.14 6 4 36000 36000 Use Mo
COLI RD SH 66 BLDR CR 6 1.00 0 4580 0 250 0.16 5 2 14400 14400 Use Mo | el | | COLIRD SPUT CL 0.08 0 13370 0 690 0.19 6 4 36000 36000 Use Mo
COLIRD CL SPUT 0.08 0 13370 0 690 0.19 6 4 36000 36000 Use Mo | el | | COLI RD CL LONGMONT CL 0.03 0 13370 0 690 0.19 6 4 36000 36000 Use Mo
COLI RD SPLIT CL 0.04 0 8740 0 410 0.12 6 4 36000 36000 Use Mo | el | | COLI RD CL SPUT 0.04 0 13370 0 690 0.19 6 4 36000 36000 Use Mo
COLI RD CL SH 66 0.86 9550 8410 764 400 0.12 6 4 36000 36000 Use Mo | | | COLLIRO BOULDER CR 6 STR 0.15 0 5470 0 230 0.21 5 2 13200 13200 Use MO COLLINS ST CR 33 CLEATON 1.00 4162 9470 791 620 0.26 1 2 18000 18000 Use MO | el | | COLINS ST CLEATON CR35 0.01 0 9470 0 620 0.26 1 2 18000 18000 Use MO COLORADO AV CR12 NCL 0.38 0 23620 0 1860 0.45 6 2 26400 26400 Use MO | el
el | | COLORADO AV CLI SH52 0.59 0 23670 0 1780 0.50 6 2 22800 22800 Use Mo
COLORADO AV NCL SPLIT 0.05 0 23620 0 1860 0.45 6 2 22800 22800 Use Mo | el
el
el
el | | COLORADO AV NCL 37E11 0.05 0 23520 0 1660 0.43 0 2 26400 26400 0.55 NO COLORADO AV 113.75 CR 115 0.25 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0.00 8 2 6000 6000 No Model N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO
MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0.00 8 2 6000 6000 NO MODEL N COLORADO AV CR 113 113.75 0.76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | el
el
el
el
el | | COLUMBUS AVE CR 90 CARLIN ST 0.07 0 0 0 0.00 2 2 1800 1800 No Model N | el
el
el
el
el
el
el | | COLUMBUS AVE CARLIN ST END 0.03 0 0 0 0.00 2 2 1800 1800 No Model N COMMANCHE CT HOPI CDS 0.18 0 0 0 0.00 3 2 3000 3000 No Model N COMPO RD CR 396 LAGO DR 0.26 0 0 0 0.00 3 2 3000 3000 No Model N | el el el el el el el count Count | | COMPO RD LAGO DR ALTO WY 0.43 0 0 0 0 0.00 3 2 3000 3000 No Model N | el el el el el el el count Count Count Count Count Count | | CONNECTOR CR35 CR 66 0.07 0 0 0 0 0.00 3 2 3000 3000 No Model N
CONNECTOR CR128 CR 126.5 0.05 0 0 0 0 0.00 8 2 6000 6000 No Model N
CONNECTOR CR126 CR 126.5 0.05 0 0 0 0 0.00 8 2 6000 6000 No Model N | el el el el el el el count Count Count Count Count Count | | CONNECTOR CR 16.5 CR 63 0.13 781 1050 156 210 0.09 7 2 6000 6000 Use Coll CONNECTOR CR 16.5 CONNECTOR 0.10 161 220 43 60 0.02 7 2 6000 6000 Use Coll | el el el el el el el el count | | CONNECTOR | CR 136 | CR 79 | 0.02 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 14400 | 14400 | No Model No Count | |--------------------------------------|---------------------------------|----------------------------------|----------------------|-----------------|----------------|--------------|------------------|----------------------|-------------|-----|-------------------------|-----------------------|---| | CONRAD
CORNERSTONE CT | CR 48.5
CORNERSTONE | END
CDS | 0.15
0.11 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 6000
1800 | 6000
1800 | No Model No Count
No Model No Count | | CORNERSTONE WY
COTTONWOOD LN | CR 72
BGN | CDS
FAIR LN | 0.46
0.22 | 0 | 0 | 0 | 0 | 0.00 | 1 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | COTTONWOOD LN COYOTE RIDGE DRIVE | FAIR
CR 15 | CR 10 | 0.17
0.73 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | COYOTE RIDGE DRIVE
COYOTE TR | CR76.5
CABALLO TR | CDS
CDS | 0.20
0.07 | 0 | 0 | 0 | 0 | 0.00 | 1 2 | 2 | 1800
3000 | 1800
3000 | No Model No Count No Model No Count No Model No Count | | CR 18.5
CR 18.5 | CL HUDSON
SRFCH | SRFCH
CR 49 | 0.21
0.03 | 172
0 | 340
5580 | 46
0 | 90
330 | 0.01
0.19 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
Use Model | | CR 19.75
CR 23 | CR 46.5
WIDCH | CR 46.75
CR 23 | 0.25
0.41 | 230
1658 | 1150
7110 | 41
249 | 200
1070 | 0.04 | 5 | 2 | 13200
12000 | 13200
12000 | Use Count
Use Count | | CR 23
CR 23 | STR
SH 392 | WIDCH
WIDCH | 0.19
0.11 | 0 | 11720
7110 | 0 | 620
1070 | 0.44
0.30 | 3 | 2 | 13200 | 13200
12000 | Use Model No Model No Count Derived | | CR 23
CR 23.75 | WIDCH
SPLIT | SH 392
CR 64.75 | 0.11
0.15
0.11 | 0 | 11250
15810 | 0 | 600
1110 | 0.30
0.43
0.22 | 1 2 | 2 4 | 12000
13200
36000 | 13200
36000 | No Model No Count Derived No Model No Count Derived Use Model | | CR 33.50
CR 33.75 | CR 4
CR 4 | END
END | 0.25
0.41 | 0 | 0 | 0 | 0 | 0.00 | 7 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | CR 35.75
CR 40 | BGN
END | LEIF LANE
CR 49 | 0.03 | 0 | 0 | 0 | 0 | 0.00 | 2 4 | 2 | 1800
1800
14400 | 1800
1800
14400 | No Model No Count
No Model No Count
No Model No Count | | CR 400
CR 400 | CR 135
SURFACE CHANGE | SRFCH
END | 0.98
0.64 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count
No Model No Count | | CR 46.75
CR 47.5 | CR 19.75
SH 34 | CR 21
WIDCH | 0.84
0.25
0.91 | 0 | 1150
2650 | 0 | 200
220 | 0.04
0.09 | 5
4 | 2 | 13200 | 13200
14400 | No Model No Count Derived | | CR 47.5 | SRFCH | WELD COUNTY | 0.02
0.04 | 0 | 7390 | 0 | 450 | 0.26 | 4
4
4 | 2 | 14400
14400 | 14400 | Use Model Use Model | | CR 47.5
CR 5
CR 64.75 | WIDCH
VISTA VIEW DR
SPLIT | SRFCH
SH 119
CR 23.75 | 0.09
0.74 | 0 | 0 | 0 | 450
0
1200 | 0.26
0.00
0.24 | 6 | 2 | 3000
36000 | 3000
36000 | Use Model
No Model No Count | | CRLSBD DR | CR 33.05 | CR 33.33 | 0.30 | 2643
0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000 | 3000 | Use Model
No Model No Count | | DAFFODIL
DALE AV | SH 34
CR 31 | CR 58.25
CR 33 | 0.06
0.99 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 13200
1800 | 13200
1800 | No Model No Count
No Model No Count | | DAVIS RD DEARBORN AV | BGN
TIOGA
CR 1036 | CR 54.4
CR 105
TIOGA | 0.14
0.13
0.07 | 128
0
0 | 0 | 10
0
0 | 10
0
0 | 0.03
0.00
0.00 | 4
8
8 | 2 | 3000
1800
1800 | 3000
1800
1800 | Use Count
No Model No Count | | DEARBORN AV DEERE RD | CR 10 | END | 0.26 | 0 | 0 | Ö | 0 | 0.00 | 6 | 2 | 1800 | 1800 | No Model No Count
No Model No Count | | DEFORD ST
DEHNING WY | COLORADO
SKYWAY DR | SH 14
VISTA VIEW DR | 0.20
0.10 | 0 | 0 | 0 | 0 | 0.00 | 8
6 | 2 | 6000
3000 | 6000
3000 | No Model No Count
No Model No Count | | DEL COMINO LN DEL COMINO LN | CR 20
S VISTA | S VISTA
END | 0.96
0.06 | 73
0 | 140
0 | 7 | 10
0 | 0.02
0.00 | 6 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | DELWOOD AV | S VISTA
BGN | END
CR 58.25 | 0.36
0.15 | 0 | 0 | 0 | 0 | 0.00 | 6
4 | 2 | 3000
13200 | 3000
13200 | No Model No Count
No Model No Count | | DELWOOD AV
DENVER AV | CR 58.45
CR 6 | CR 58.5
CL FORT LUPTON | 0.08
0.18 | 270 | 4600 | 0
30 | 0
240 | 0.00
0.12 | 7 | 2 | 3000
19200 | 3000
19200 | No Model No Count Use Model | | DIANA PL
DIANA ST | BGN
GRANDVIEW DR | GRANDVIEW DR
35TH | 0.08
0.05 | 0
94 | 8720 | 0
6 | 0
390 | 0.00
1.45 | 3 | 2 | 3000
3000 | 3000
3000 | No Model No Count Use Model | | DILMONT AV
DINOSAUR CT | BGN
CR 52.15 | CR 58.25
END | 0.20
0.05 | 196
0 | 230 | 24
0 | 30
0 | 0.02
0.00 | 3 | 2 | 6000
3000 | 6000
3000 | Use Count
No Model No Count | | DOROTHY AV
DOVE | FRONT ST
CR 3520 | END
CDS | 0.04
0.07 | 0 | 0 | 0 | 0 | 0.00 | 5
7 | 2 | 6000
3000 | 6000
3000 | No Model No Count No Model No Count | | DOVE HAVEN LN DREAM ACRES | CR 40.5
CR 11 | CDS
END | 0.28
0.47 | 0 | 0 | 0 | 0 | 0.00 | 5
6 | 2 | 1800
6000 | 1800
6000 | No Model No Count
No Model No Count | | DUNMIRE
DURANGO PL | WILLIAMS
LOWER RIDGE RD | SRFCH
LOWER HIGHLAND | 0.33
0.07 | 0 | 2530
0 | 0 | 100
0 | 0.42 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count Derived
No Model No Count | | DURANGO PL
DURANGO PL | IDAHO CREEK PY | UPPER RIDGE RD | 0.15
0.23 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | DYE ST
EAGLE DR | FRONT ST
CR 35 | 2ND ST
CR 3520 | 0.07
0.31 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | EDGEWATER PL
EDGEWATER RD | CDS
CR 5.5 | CDS
EDGEWATER PL | 0.13
0.06 | 0 | 0 | 0 | 0 | 0.00 | 6
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | EDIE PL
EDWARD ST | CR 10.6
LEONA | END
MARY ST | 0.16
0.14 | 0 | 0 | 0 | 0 | 0.00 | 6
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | ELDER AV
ELIZABETH ST | CR 58.25
CR 10 | CR 58.5
CLARA LEE ST | 0.25
0.40 | 0 | 0 | 0
0 | 0 | 0.00 | 7 | 2 | 13200
3000 | 13200
3000 | No Model No Count
No Model No Count | | ELM ST
ELM ST | CR 15
CR 37.9 | END
CR 39 | 0.50
0.11 | 107
0 | 160
0 | 0
0 | 0 | 0.01
0.00 | 6
2 | 2 | 6000
1800 | 6000
1800 | Use Count
No Model No Count | | ELMER LINN DR
ELMWOOD DR | CR 550
17TH ST | PEARL HOWLETT
CR 58.5 | 0.36
0.08 | 279
0
529 | 520
0 | 6
0 | 10
0 | 0.09 | 6
4 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | ENTRANCE RD
ESSEX RD | CR 550
CR 3455 | CR 560
SRFCH | 0.10
0.30 | 0 | 1400
0 | 0 | 0 | 0.23 | 6
4 | 2 | 3000
1800 | 3000
1800 | Use Count
No Model No Count | | ESSEX RD
ESSEX RD NORTH 1 | CDS
CR 3492 | CR 3455
CDS | 0.68 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | ESSEX RD NORTH 2
ESSEX RD SOUTH 1 | CDS
CR 3942 | CDS
CDS | 0.20 | 0 | 0 | 0
0 | 0 | 0.00 | 4 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | ESSEX RD SOUTH 2
ESSEX ROAD SOUTH | CDS
ESSEX ROAD | CR 3942
CDS | 0.09
0.12 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | ETHEL AV
ETHEL AV | CL MILLIKEN
CL MILLIKEN | RRX
CL | 0.01
0.12 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | ETHEL AV
EVEREST PLACE | RRX
YOSEMITE | CL MILLIKEN
CDS | 0.04
0.09 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 6000
3000 | 6000
3000 | No Model No Count
No Model No Count | | EVERGLADE CT
FACTORY RD | CR 52.3
2ND ST | END
RRX | 0.07
0.19 | 0 | 0 | 0
0 | 0 | 0.00 | 3 2 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FACTORY RD
FAIR LN | 1ST ST
COTTONWOOD | 2ND ST
CR 37 | 0.10
0.34 | 0 | 0 | 0
0 | 0 | 0.00 | 2
7 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | FAIRBANKS DR
FAIRBANKS DR | CDS
CR 3455 | CDS
SRFCH |
0.27
0.15 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | FAIRVIEW DR
FAIRVIEW DR | BGN
SKYWAY DR | SKYWAY DR
VISTA VIEW DR | 0.05
0.10 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FAIRVIEW DR
FAIRWY DR | VISTA VIEW
CR 38 | SH 119
CR 7.5 | 0.09
0.37 | 0
41 | 0
90 | 0
3 | 0
10 | 0.00 | 6
5 | 2 | 3000
13200 | 3000
13200 | No Model No Count
Use Count | | FAITH LANE
FALCON DR | CDS
SRFCH | CR 37
CR 1050 | 0.42
0.54 | 0
70 | 0
100 | 0
6 | 0
10 | 0.00
0.02 | 7 | 2 | 1800
3000 | 1800
3000 | No Model No Count
Use Count | | FALCON DR
FAR VEIW | CR 3250
BGN | SRFCH
BIG BEND | 0.13
0.07 | 70
0 | 100
0 | 6
0 | 10
0 | 0.02
0.00 | 7
6 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | FAR VIEW
FERN AV | FAR VIEW
CR 56.5 | BIG BEND
CR 58.25 | 0.22
0.71 | 0
77 | 0
110 | 0 | 0
10 | 0.00
0.01 | 6
4 | 2 | 3000
6000 | 3000
6000 | No Model No Count
Use Model | | FIR AV
FLAMING GRG CT | SPRUCE DR
BGN | LONGS PEAK ST
CR 52.3 | 0.47
0.03 | 120
0 | 270
0 | 7
0 | 20
0 | 0.05
0.00 | 6
3 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | FLINT AV
FLINT ST | BGN
CASLER AV | AGATE
HIGGINS AV | 0.18
0.09 | 0 | 0 | 0 | 0 | 0.00 | 8
7 | 2 | 6000
3000 | 6000
3000 | No Model No Count
No Model No Count | | FLINT ST
FLINT ST | GOOD AVE
BARLEY AVE / CR | GOOD AVE | 0.09 | 0
223 | 0
310 | 0
18 | 0
20 | 0.00
0.05 | 7 | 2 | 3000
3000 | 3000
3000 | No Model No Count
Use Count | | FLINT ST
FLINT ST | LAMB AV
COLEMAN AV | CASLER AV
LAMB AV | 0.09 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FOREST CANYON
FORESTER PL | BGN
LOWER RIDGE RD | BIG BEND
LOWER HIGHLAND | 0.06
0.08 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FORESTER PL | UPPER HIGHLAND | IDAHO CREEK PY
UPPER RIDGE RD | 0.09
0.08 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FORESTER PL
FREDERICK ST | CAROLINE ST | UPPER HIGHLAND
GRACE | 0.09
0.11 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | FREDERICK ST
FRONT ST | BGN
SERVICE RD | CAROLINE
CR 73 | 0.09
0.59 | 0 | 0 | 0 | 0 | 0.00 | 6
7 | 2 | 3000
14400 | 3000
14400 | No Model No Count
No Model No Count | | FRONTIER RD
GALLATIN | FAIRWY
BGN | CR 38
BIG BEND | 0.21
0.04 | 43
0 | 100
0 | 4
0 | 10
0 | 0.00 | 5
6 | 2 | 13200
3000 | 13200
3000 | Use Count
No Model No Count | | GANDER VALLEY LN
GAYLIN AV | CDS
CR 74.8 | CR 19
CR 76 | 0.10
0.24 | 0 | 0 | 0 | 0 | 0.00 | 1
1 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | GLACIER DR
GLACIER POINT | CR 33.45
BIG BEND | CR 52.25
END | 0.33 | 0 | 0 | 0 | 0 | 0.00 | 3
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | GOLD STONE CREEK CT
GOOD AV | CR 29
CR 31 | CDS
CR 33 | 0.20
0.98 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | GOOD AVE
GOOD AVE | PATRICK ST
FLINT ST | FLINT ST
JADE ST | 0.17
0.17 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | GOOD AVE
GR CANYON | JADE ST
CR 33.45 | END
CR 52 | 0.02
0.40 | 0
315 | 0
530 | 0
16 | 0
30 | 0.00 | 7 | 2 | 3000
3000 | 3000
3000 | No Model No Count
Use Count | | GRACE AV
GRANDTETON | FREDERICK
CR 52.2 | CR 6
CR 52.2 | 0.12
0.38 | 44
0 | 90
0 | 3
0 | 10
0 | 0.02
0.00 | 6 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | GRANDVIEW | 3RD ST | 1ST ST | 0.15
0.25 | 159
0 | 310 | 19
0 | 40
0 | 0.05
0.00 | 2 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | GRANDVIEW DR | CINDY PL | END | | | | | | | | | | | | | Section | GRANDVIEW ST | CDS | LYNN ST | 0.12 | 0 | 0 | 0 | 0 | 0.00 | 3 2 | 2 3000 | 3000 | No Model No Count | |--|--|---|---
--|---|---|---|---|--|--|--|---|--| | Column C | GRANDVIEW ST | LYNN ST | CINDY PL | 0.12 | | 0 | | | 0.00 | 3 3 | 2 3000 | 3000 | No Model No Count | | MARCH MARC | GRANJERO RD | CR 396 | CR 5060 | 0.26 | | 0 | 0 | | 0.00 | 3 | | 3000 | | | Application Column Colum | | | | | _ | 0 | | | | 8 | | | | | ANALYSIN Column | HANGIS CT | CDS | SH 56 | 0.18 | 0 | 0 | 0 | 0 | 0.00 | 5 5 | 2 1800 | 1800 | No Model No Count | | MAINTAIN | | | CDS
KYLE PL | | | 0 | | | | 1 | 2 1800
2 1800 | | | | Margin 1 | HAROLD ST | BARLEY | CR 18 | 1.00 | 0 | Ö | 0 | 0 | 0.00 | 7 | 2 1800 | 1800 | No Model No Count | | MARCH MARC | | | | | | 0 | | | | | 2 1800
2 1800 | | | | HERE ADD 1.00 | | BGN | FRONT ST | 0.03 | 0 | 0 | | | 0.00 | 7 | 2 1800 | 1800 | No Model No Count | | TEMPOR 19 19 19 19 19 19 19 1 | | CR 13.2 | | 0.06 | | 0 | 0 | | | 6 | | | | | | | | | | | 0 | | | | 7 7 | | | | | | | CR 31 | CR 33 | 0.76 | | 0 | 0 | | 0.00 | 7 | | | | | | | | | | | 0
50 | 7 | | | 7 7 | 2 3000 | | | | STATE STAT | HIGGINS AV | JADE ST | END | 0.02 | 0 | 0 | | 0 | 0.00 | 7 | 2 3000 | 3000 | No Model No Count | | | | | | 0.09 | | 0 | | | | 7 6 | | | | | Internation 1996 | HIGHLAND PLACE | CDS | SH 52 | 0.22 | 0 | Ŏ | | 0 | 0.00 | | 2 1800 | 1800 | No Model No Count | | Header 1965 | | | | | | 0 | | | | 5 | | | | | Millard Mill | HIGHVIEW DR | CDS | PARENT ST | 0.07 | 0 | Ö | 0 | 0 | 0.00 | | 2 1800 | 1800 | No Model No Count | | High Arch 170 | | | | | | 0 | 0 | 0 | | 5 5 | | | | | Section Sect | | | | | | 0 | | | | 1 | | | | | SECTION STATE SECTION SECTIO | HOLLY AV | | | | | 0 | | | 0.00 | 4 | | | No Model No Count | | HOLLAND HOLLAND HOLLAND HOLLAND HOLDAND HOLD | | SRFCH
WELD COLINITY | | | | 0 | | | 0.00 | | | 6000 | | | HOLD ALL ALL ALL ALL ALL ALL ALL ALL ALL A | HOLLY AV | HOLLY AV | HOLLY AV | 0.21 | 0 | 0 | 0 | 0 | 0.00 | 4 | 2 6000 | 6000 | No Model No Count | | INCHESTRATE 16. | | SRFCH
URBDRY | SRFCH
URBDRY | | | 0 | | | | | 2 6000
2 1800 | | | | SHORT STATE STAT | HOLLY AV | LG | URBDRY | 0.07 | 0 | ŏ | 0 | 0 | 0.00 | | 2 1800 | 1800 | No Model No Count | | SIGNATURE C. C. C. C. C. C. C. C | | | | | | 0 | | | | 6 | | | | | Heart Col. | HOMESTEAD CT | BGN | CR 3313 | 0.09 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | Index 100
100 10 | HOPI TR | | CR 13.9 | 0.40 | | 90 | 0 | | 0.00 | 3 3 | | | | | HOT SERVICE AND SE | HOT SPGS DR | CR 52.1 | CR 52.15 | 0.06 | 0 | 0 | | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | HE MESSER CREAT CLEAN AND ADDRESS ADDR | HOT SPRINGS | BIG BEND | END | 0.06 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 3000 | 3000 | No Model No Count | | Index CHE CR TOP F995-17E 2.1 1. 0 0 0 0 0 0 0 0 0 0 | HT SPGS DR | CR 33.2 | CR 33.33 | 0.11 | | 0 | | 0 | 0.00 | 3 7 | 2 3000 | 3000 | No Model No Count | | INFERT C. C. C. C. C. C. C. C | IDAHO CREEK PY | CR 750 | FORESTER PL | 0.11 | 0 | 0 | Ö | 0 | 0.00 | 6 | 2 3000 | 3000 | No Model No Count | | MACRONIN | | | | 0.50 | | 0 | | | | 5 5 | | | No Model No Count | | MORE MARCH | JACKSON | BIG BEND | END | 0.06 | 0 | ő | 0 | 0 | 0.00 | 6 | 2 3000 | 3000 | No Model No Count | | ADE ST | | | | | | 0 | 0 | | | 2 2 | | | No Model No Count | | AMESIT Modify May 1, 100 | JADE ST | CASLER AV | HIGGINS AV | 0.09 | 0 | ő | | 0 | 0.00 | 7 | 2 3000 | 3000 | No Model No Count | | ADM ST | | GOOD AVE | | | 108 | 0
150 | | | | 7 7 | | | | | AA-BOSO | JADE ST | LAMB AV | CASLER AV | 0.09 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 3000 | 3000 | No Model No Count | | Pot MetaDocycol #80 END | | COLEMAN AV | | | | 0 | | | | 7 | | | | | OPINION 17 CHEROSIC MCCURE 0.38 122 200 50 480 0.18 6 2 1300 1310 1410 | JCK PL | MEADOWVALE RD | END | 0.05 | | Ö | 0 | 0 | 0.00 | | 2 3000 | 3000 | No Model No Count | | Independ with Independent | | CK /
CL FREDERICK | | | | 4960 | | | | | | | | | APAILLEST | | BGN | CR 39 | | 65 | 150 | 7 | 20 | | 7 | | | | | RELITY IN SPIT AN FAN C. 93 | | | | | | 0 | | | | 6 | | | | | FEIL'LL METH AV | | GATE | END | 0.28 | | 0 | 0 | | 0.00 | 5 2 | 2 1800 | 1800 | No Model No Count | | RINGE CLIP R. CR \$2.15 CR \$2.25 CP 0.00 0 0 0.00 3 2 2 3000 3000 Mo Model No Count RINGE CLIP R. CR \$3.15 CR \$2.25 CR \$4 | | | | | | 0 | 0 | | | 7 7 | | | | | MINICE DE C. R. 23 05 C. R. 23 13 0.00 0. | | | | | | 0 | | | | 7 2 | | | No Model No Count | | SCHWADER CR\$2.5 SRECH 0.25 0.3 0.0 0.0 0.00 3 2 3000 3000 No Model No Count NO MODEL NO COUNTY N | | | | 0.09 | | 0 | | | | 3 | | | | | SECONDA DR SECONDA S | | | | | | 0 | | | | 3 | | | | | SECONDAPR CR S4 | KIOWA DR | CR 52.8 | CR 52.5 | 0.32 | Ö | Ö | Ö | 0 | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | RONST | | SRFCH
CR 54 | | 0.08 | | 90 | | | 0.00 | 3 3 | | | | | APPLICATE CDS | KNOX ST | FRONT ST | 2ND ST | 0.07 | 0 | 0 | Ö | 0 | 0.00 | 7 | 2 1800 | 1800 | No Model No Count | | ARSACT BGN SVISTA 0.07 0 0 0 0 0 0 0 0 0 | KOCH ST
KYLF PLACE | | CR 13.3
HANNAH WAY | | | 0 | | | | 6 | | | | | LAKE MEAD CR 52-15 CR 52-25 O.99 O. 0 O. 0 O. 0 O. 0 3 2 1800 1800 No Model No Count | LA ROSA CT | BGN | SVISTA | 0.07 | | Ŏ | Ŏ | | 0.00 | 6 | 2 3000 | 3000 | No Model No Count | | LAKE MEAD CR 52.15 CR 52.25 CR 52.26 O.99 O. 3 2 3000 3000 No Model No Count | | | | | | 0 | 0 | 0 | | 3 | | | | | LAKE YIEW CT | LAKE MEAD | CR 52.15 | CR 52.25 | 0.09 | Ö | Ŏ | Ö | Ö | 0.00 | 3 | 2 3000 | 3000 | No Model No Count | | LAKCITA LAKES RD CDS CR S4 0.26 0 0 0 0.00 3 2 1800 1800 No Model No Count LAKCITALT CR S6.8 END 0.25 0 0 0 0 0.00 3 2 1800 1800 No Model No Count LAKCITALT CR S6.8 END 0.25 0 0 0 0 0.00 3 2 1800 1800 No Model No Count LAKCITALT CR S1 0.00 LEE NO COUNT CR S1 0.00 NO COUNT CR S1 0.00 NO NO Model No Count LEE NO COUNT CR S1 0.00 NO COUNT CR S1 0.00 NO Model No Count LEE NO COUNT CR S1 0.00 NO COUNT CR S1 0.00 NO MODEL N | LAKE VIEW CT | | END | 0.09 | 0 | 0 | | | 0.00 | 3
1 | 2 3000 | 3000 | | | LAMB AV | LAKOTA LAKES RD | CDS | CR 54 | 0.26 | | 0 | Ö | | 0.00 | 3 | 2 1800 | 1800 | No Model No Count | | LAMB AV | LAMB AV | CR 31 | CR 33 | 0.98 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 1800 | 1800 | No Model No Count | | LAMB AV GR 37.15 SRTH ST 0.11 0 0 0 0 0 0.00 7 2 3000 3000 No Model No Count LABSON AV GR 37.15 SRTH ST 0.11 0 0 0 0 0 0.00 3 2 2 6000 6000 No Model No Count LASSALE AV GR 1034 GR 1036 0.17 0 0 0 0 0 0 0.00 8 2 1800 1800 No Model No Count LASSALE AV GR 1034 GR 1036 0.17 0 0 0 0 0 0 0.00 8 2 1800 1800 No Model No Count LASSALE AV GR 1034 GR 1036 NO MODEL MODE | LAMB AV | | | | | 0 | | | | 7 7 | 2 3000 | 3000 | No Model No Count | | LASSALLE AV | LAMB AV | JADE ST | END | 0.02 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 3000 | 3000 | No Model No Count | | LASSEN CT CR 152.05 CR 52.1 0.09 0 0 0 0 0 0 0 0 0 | LARSON AV | CR 37.15 | 38TH ST | 0.11 | | 0 | | | | 3 3 | 2 6000 | 6000 | | | LATHAM VIEW CT | LASSEN CT | CR 52.05 | CR 52.1 | 0.09 | 0 | Ö | Ö | Ö | 0.00 | | 2 3000 | 3000 | No Model No Count | | LEE LAKE AV | | | | | | 0 | | | | 3 4 | | | | | LEFS T | LEE LAKE AV | CR 15.10 | CR 76.35 | 0.52 | 0 | Ö | Ö | Ö | 0.00 | 1 | 2 3000 | 3000 | No Model No Count | | LEIF LANE | LEE ST | | | | | 0 | | | | | | | No Model No Count
No Model No Count | | LEOLA WAY | LEIF LANE | JADE DRIVE | CR 35.9 | 0.30 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 1800 | 1800 | No Model No Count | | LEONA ST | LEOLA WAY | WCR 74 | CDS | 0.38 | | 290 | 29 | | 0.08 | 2 | | | Use Count | | IGHTHQUISE CT | | EDWARD | CR 6 | 0.06 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 3000 | 3000 | No Model No Count | | LINDEN ST | I EST E CT | 3BD V// | + III AV | | | 0 | | | 0.00 | | 2 1800 | 1800 | No Model No Count | | LONGS PIAR DR PIES PEAK DR CR 3 0.20 0 0
0 0 0.00 7 2 1800 1800 No Model No Count 10NGS PEAK DR PIES PEAK DR CR 3 0.20 0 0 0 0 0 0 0 0 0 | LESLIE ST
LIGHTHOUSE CT | CDS | CR 7 | 0.29 | | | 0 | . 0 | 0.00 | 2 | 2 3000 | 3000 | No Model No Count | | LONGS PK RD BGN PIKES PEAK DR 0.48 0 0 0 0 0.00 1 2 3000 3000 No Model No Count | LESLIE ST
LIGHTHOUSE CT
LINDEN ST | CDS
4TH STREET | WALL ST | 0.11 | | .0 | ñ | Λ | 0.00 | 6 | 2 3000 I | | | | LONGSPK ST | LESLIE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST | CDS
4TH STREET
BGN
MCKINLEY AV | WALL ST
SVISTA
PARK AV | 0.11
0.11
0.06 | 0 | 0 | Ö | Ö | 0.00 | | 2 1800 | 1800 | No Model No Count | | LONGVIEW BLVD BGN CR 3.5 0.08 0 0 0 0 0.00 6 2 3000 3000 No Model No Count | LESLIE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR | WALL ST
SVISTA
PARK AV
CR 3 | 0.11
0.11
0.06
0.20 | 0
0
0 | 0
0
0
0 | 0 | 0 | 0.00 | | 2 1800
2 3000 | 1800
3000 | No Model No Count
No Model No Count | | LOWELLIN | LESLIE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR LONGS PK RD LONGSPK ST | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END | 0.11
0.11
0.06
0.20
0.48
0.16 | 0
0
0
0 | 0
0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 0.00
0.00
0.00
0.00 | 7
1
1
6 | 2 1800
2 3000
2 3000
2 1800 | 1800
3000
3000
1800 | No Model No Count No Model No Count No Model No Count No Model No Count | | LOWER RIGGERD BUTTE DR LOWER HIGHLAND 0.18 0 0 0 0.00 6 2 3000 3000 No Model No Count | LESLIE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR LONGS PEAK DR LONGS PK RD LONGSPK ST LONGVIEW BLVD | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0 | 0.00
0.00
0.00
0.00
0.00 | 7
1
1
6
6 | 2 1800
2 3000
2 3000
2 1800
2 3000 | 1800
3000
3000
1800
3000 | No Model No Count | | LYNN ST CDS CR 35 0.12 122 630 11 30 0.11 3 2 3000 3000 Use Model NO Count MAIN ST 2CFH AV 0.08 0 0 0 0 0 0.00 3 2 3000 3000 No Model NO Count MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0 0 0.00 7 2 65000 6000 No Model NO Count MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0 0 0.00 7 2 65000 6000 No Model NO Count MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0 0 0 0.00 7 2 65000 6000 No Model NO Count MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0 0 0 0.00 4 2 14400 14400 No Model NO Count MAIN ST URBORY CL LASAILE 0.15 0 0 0 0 0 0.00 4 2 14400 14400 No Model NO Count MAIN ST URBORY CL LASAILE 0.15 0 0 0 0 0 0.00 4 2 14400 14400 No Model NO Count MAIN ST CR 31 LESH DR CL 0.50 54 180 11 40 0.02 1 2 6500 6000 NO Model NO Count MAIN ST ST CR 31 LESH DR CL 0.55 5 1383 1580 11 40 0.02 1 2 6500 6000 100 Use Count MAIN ST ST RAILROAD AVE CR 51 0.31 0 0 0 0 0.00 2 2 1 1800 1800 No Model NO Count MAIN ST RAILROAD AVE CR 51 0.31 0 0 0 0 0 0.00 2 2 2 1800 1800 No Model NO Count MAIN ST ST RAILROAD AVE CR 51 0.33 0 0 0 0 0 0.00 8 2 1800 1800 No Model NO Count | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR LONGS PK RD LONGSPK ST LONGVIEW BLVD LONGVIEW BLVD LOWERLLIN | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN BGN CR 7 | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN CR 3.5 GATE | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 7
1
1
6
6
6
6 | 2 1800
2 3000
2 3000
2 1800
2 3000
2 3000
2 3000
2 13200 | 1800
3000
3000
1800
3000
3000
13200 | No Model No Count | | MAIN ST CR 43 CL HUDSON 0.43 0 0 0 0.00 7 2 6000 6000 No Model No Count MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0.00 7 2 6000 6000 No Model No Count MAIN ST CR 39 URBDRY 0.23 0 0 0 0.00 4 2 14400 14400 No Model No Count MAIN ST URBDRY CL LASALLE 0.15 0 0 0 0.00 4 2 14400 14400 No Model No Count MAIN ST CR 31 LESH DR CL 0.50 54 180 11 40 0.02 1 2 6000 6000 Use Count MAIN ST STR CR 74 0.55 138 1580 2 2 14400 14400 Use Count MAIN ST RAILROAD AVE CR 51 0.31 0 0 0 0.00 | LESLIE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR LONGS PE K RD LONGS PE K TD LONGS PE W TD LONGS PE W TD LONGVIEW BLVD LOWER HIGHLAND RD LOWER RIIGHLAND RD LOWER RIIGHLAND RD | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN BGN CR 7 BUTTE DR BUTTE DR | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN CR 3.5 GATE LOWER RIDGE RD LOWER HIGHLAND | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.18 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 7
1
1
6
6
6
6
6
6
6 | 2 1800
2 3000
2 3000
2 1800
2 1800
2 3000
2 3000
2 13200
2 3000
2 3000 | 1800
3000
3000
1800
3000
3000
13200
3000
3000 | No Model No Count | | MAIN ST CL HUDSON HICKORY ST 0.08 0 0 0 0 0.00 7 2 6000 6000 No Model No Count | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONGS PEAK DR LONGS PEAK DR LONGSPK ST LONGVIEW BLVD LONGVIEW BLVD LOWER LIN LOWER HIGHLAND RD LOWER RIDGE RD | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN BGN BGN CR 7 BUTTE DR BUTTE DR CDS | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN CR 3.5 GATE LOWER RIDGE RD LOWER HIGHLAND CR 3.5 | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.18
0.12 | 0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 7
1
1
6
6
6
6
6
6
6 | 2 1800
2 3000
2 3000
2 1800
2 1800
2 3000
2 3000
2 13200
2 3000
2 3000
2 3000
2 3000 | 1800
3000
3000
1800
3000
3000
13200
3000
3000
3000 | No Model No Count See Model Use Model | | MAIN ST URBDRY CLLSALLE 0.15 0 0 0 0.00 4 2 14400 14400 No Model No Count | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONES PEAD DR LONGS LOWER BLOD LO | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN BGN CR 7 BUTTE DR BUTTE DR CDS 26TH AV CR 43 | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN CR 3.5 GATE LOWER RIGHEAD LOWER HIGHLAND CR 3.5 2.5TH AV CL HUDSON | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.18
0.12
0.08
0.43 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 7
1
1
6
6
6
6
6
6
6 | 2 1800
2 3000
2 3000
2 1800
2 1800
2 3000
2 3000
2 13200
2 3000
2 3000
2 3000
2 3000
2 3000
2 6000 | 1800
3000
3000
1800
3000
3000
13200
3000
3000
3000
3000
6000 | No Model No Count Use Model No Count Use Model No Model No Count | | MAIN ST CR 31 LESH DR CL 0.50 54 JBO 11 40 0.02 1 2 6000 6000 Use Count MAIN ST STR CR 74 0.55 1138 1580 262 360 0.05 2 2 14400 14400 Use Count MAIN ST RAILROAD AVE CR 51 0.31 0 0 0 0.00 2 2 1800 1800 No Model No Count MAIN ST SH 392 STH AV 0.33 0 0 0 0.00 8 2 1800 1800 No Model No Count | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LOME PINE ST LONES PEAD OR LOWER RIGHTHOUSE RIGHT | CDS ATHSTREET BGN MCKINLEY AV PIKES PEAK DR BGN BGN CR 7 BUTTE DR BUTTE DR CDS 26TH AV CR 43 CL HUDSON | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR BGN CR 3.5 GATE LOWER RIDGE RD LOWER HIGHLAND CR 35 25TH AV CL HUDSON HICKORY ST | 0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.12
0.08
0.12
0.08 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.11
0.00
0.00
0.00 | 7 1 1 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 | 2 1800
2 3000
2 3000
2 1800
2 1800
2 3000
2 3000
2 3000
2 3000
2 3000
2 3000
2 3000
2 3000
2 6000 | 1800
3000
3000
1800
3000
3000
3000
3000 | No Model No Count Use Model No Model No Count | | MAIN ST RAILROAD AVE CR 51 0.31 0 0 0 0 0.00 2 2 1800 1800 No Model No Count MAIN ST ST 81 832 5TH AV 0.38 0 0 0 0 0.00 8 2 1800 1800 No Model No Count | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LOME PINE ST LOMES PINE ST LONGS PERD LONGS PERD LONGSPER ST LONGSPER ST LONGSPER ST LONGSPER BLVD LONGSPER BLVD LOWER HIGHLAND RD LOWER RIGHLAND | CDS 4TH STREET BGN MCKINLEY AV PIKES PEAK DR BGN FIR AV BGN BGN CR 7 BUTTE DR CDS 25TH AV CR 43 CL HUDSON CR 39 URBDRY | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.12
0.08
0.23
0.08 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 |
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.11
0.00
0.00
0.00
0.00
0.00 | 7
1
1
6
6
6
6
6
6
6
6
6
6
7
7
7 | 2 1800
2 3000
2 3000
2 1800
2 1800
2 3000
2 4000
2 14400 | 1800
3000
1800
1800
3000
3000
13200
3000
3000
3000
6000
6000
14400
14400 | No Model No Count | | | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONES PEAD OR LONGS LOWELLIAND RD LOWER RICHARD RD LOWER RICHARD RD LYNN ST MAIN ST MAIN ST MAIN ST MAIN ST MAIN ST | CDS BGN MCKINLEY AV PIKES PEAK DR BGN BGN FIR AV BGN BGN BGN BGN BGN BGN CR 7 BUTTE DR CDS 26TH AV CR 43 CL HUDSON CR 39 URBDRY CR 31 | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN CR 3.5 GATE LOWER RIGGE RD LOWER HIGHLAND CR 35 25TH AV CL HUDSON HICKORY ST URBDRY CL LASALLE LESH DR CL | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.18
0.12
0.08
0.43
0.08
0.23
0.15 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 7
1
1
6
6
6
6
6
6
6
6
6
6
7
7
7 | 2 1800
2 3000
2 13000
2 1800
2 1800
2 3000
2 3000
2 13200
2 3000
2 3000
2 3000
2 3000
2 6000
2 6000
2 14400
2 14400
2 14400
2 6000 | 1800
3000
1800
3000
1800
3000
3000
3000 | No Model No Count Use Model No Count No Use Count | | | LESUE ST LIGHTHOUSE CT LINDEN ST LOMALINDA CT LONE PINE ST LONES PIRE ST LONGS PER DR LOWER RIGHTHOUSE BLVD MAIN ST | CDS BGN MCKINLEY AV PIKES PEAK DR BGN | WALL ST SVISTA PARK AV CR 3 PIKES PEAK DR END BGN GR 3.5 GATE LOWER RIDGE RD LOWER HIGHLAND CR 3.5 25TH AV CL HUDSON HICKORY ST URBDRY CL LASALLE LESH DR CL CR 74 CR 751 | 0.11
0.11
0.06
0.20
0.48
0.16
0.60
0.08
0.50
0.11
0.18
0.12
0.08
0.43
0.08
0.23
0.23
0.55
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35
0.35 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 1800
2 3000
2 13000
2 1800
2 1800
2 3000
2 3000
2 13200
2 3000
2 3000
2 3000
2 3000
2 6000
2 6000
2 14400
2 14400
2 14400
2 14400
2 16000
2 16000 | 1800
3000
3000
1800
3000
3000
3000
3000 | No Model No Count Use Model No Count No Model No Count Use Count Use Count Use Count Use Count | | MAPLE | CR 15 | END | 0.51 | 197 | 440 | 0 | l 0 | 0.04 | 6 | 2 | 6000 | 6000 | Use Count | |--|-----------------------------|--------------------------------|----------------------|-------------------|----------------|--------------|-----------------|----------------------|-------------|---|-------------------------|-------------------------|---| | MAPLE ST
MAPLE ST | CR 37.9
CR 37.95 | CR 37.95
CR 39 | 0.06
0.05 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | MARBLE AV | CR 82.5 | SH 14 | 1.52
0.17 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count No Model No Count No Model No Count | | MARTIN ST
MARY AV | CR 10
CHRISTIAN | END
CR 6 | 0.17
0.31
0.91 | Ŏ | 0 | 0 | Ö | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count | | MARY AV
MASON VIEW ROAD | CR 31
WCR 53 | WOODRUFF
CDS | 0.14 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | MATTHEWS AV
MAY DR | CR 6
CR 23 | CR 8
CDS | 1.00
0.13 | 0 | 0 | 0 | 0 | 0.00
0.00 | 1 | 2 | 6000
3000 | 6000
3000 | No Model No Count
No Model No Count | | MEADOW LN
MEADOW VALE RD | CR 8.5
ENTRANCE | COTTNWD
BLUE MOUNTAIN | 0.21
0.55 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | MEADOWLARK
MEADOWLARK PL | CR 10
CR 534 | SRFCH
END | 0.30
0.09 | 119
0 | 170
0 | 15
0 | 20
0 | 0.03 | 6 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | MEADOWLARK RD
MESA VERDA DR | SURFACE CHANGE
CR 33 | END
CR 5235 | 0.30
0.50 | 119
0 | 170
0 | 15
0 | 20
0 | 0.03 | 3 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | MESA VERDA DR
MESA VERDE | CR 5235
BIG BEND | YOSEMITE
END | 0.05 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | MESQUITE CT
MILL CREEK RD | CDS
CDS | NORTHMOOR
CR 40.5 | 0.11
0.26 | 0 | 0 | 0 | 0 | 0.00 | 5 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | MILLIKEN RD
MILTON ST | CR 52
SH 392 | CL
5TH AV | 0.50
0.38 | 4150
0 | 20310
0 | 415
0 | 1550
0 | 0.71
0.00 | 8 | 2 | 14400
1800 | 14400
1800 | Use Model
No Model No Count | | MIRIAM AVE
MONTGOMERY CI | CARLIN ST
PEARL HOWLETT | END
PEARL HOWLETT | 0.04
0.58 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | MORNING STAR CT
MORNING STAR LN | MORNING STAR
CR 72 | CDS
MORNING STAR CT | 0.24
0.09 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | MORNING STAR LN
MORRIS AV | MORNING STAR
CR 31 | CDS
CR 31.8 | 0.12
0.91 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | MORRIS AV
MOUNTAINVIEW DR | CR 31.8
CR 4.8 | END
CR 6 | 0.08
0.21 | 0 | 0 | 0 | 0 | 0.00 | 7
6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | MT RAINIER CT
MTVIEW ST | BGN
FIR AV | CR 5237
CR 5 | 0.03
0.26 | 0 | 0 | 0 | 0 | 0.00 | 3
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | N ST
NANCY AV | 26TH AV
CR 31 | 25TH AV
CR 31.95 | 0.04
0.99 | 0 | 0 | 0 | 0 | 0.00 | 3
7 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | NAVAHO CT
NAVAJO CT | BGN
BGN | CR 22
CR 33.28 | 0.06
0.04 | 0 | 0 | 0 | 0 | 0.00 | 6
3 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | NEBRASKA ST
NELSON | BGN
APPALOOSA | SH 14
CR 37 | 0.20
0.17 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 6000
1800 |
6000
1800 | No Model No Count
No Model No Count | | NESTING CRANE
NESTING CRANE | NESTING CRANE
END | NESTING CRANE
NESTING CRANE | 0.04 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 13200
6000 | 13200
6000 | No Model No Count
No Model No Count | | NESTING CRANE LANE
NESTING CRANE LANE | CDS
ACCESS RD | ACCESS RD
SH 66 | 0.11
0.30 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 13200
13200 | 13200
13200 | No Model No Count
No Model No Count | | NOLINA CT
NORTH RIM | CDS
BGN | NMORR DR
BIG BEND | 0.11
0.06 | 0 | 0 | 0 | 0 | 0.00
0.00 | 5
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | NORTHMOOR DR
NORTHWEST DR | CR 42
CR 76 | CR 11
END | 0.99
0.38 | 211
294 | 500
760 | 17
21 | 40
50 | 0.08
0.13 | 5
1 | 2 | 3000
3000 | 3000
3000 | Use Count
Use Count | | OAK ST
OCOTILLO CT | CR 1034
CDS | CR 987
NORTHMOOR | 0.19
0.12 | 0 | 0 | 0 | 0 | 0.00 | 8
5 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | OGILVY CT
OLD CR 15 | CDS
CR 15 | CR 35
CR 15 | 0.05
0.64 | 0 | 0
4730 | 0 | 0
190 | 0.00
0.16 | 3
1 | 2 | 3000
14400 | 3000
14400 | No Model No Count
Use Model | | OLD SH 52
OLD SH 6 | SH 52
BGN | SH 52
CL KEENESBURG | 0.75
0.19 | 48
685 | 90
1380 | 5
253 | 10
510 | 0.02
0.05 | 6
7 | 2 | 3000
14400 | 3000
14400 | Use Count
Use Count | | OLD SH 6
OLIVE ST | CL
CR 37.9 | CL
CR 39 | 0.25
0.12 | 685
0 | 1380
30 | 253
0 | 510
0 | 0.05
0.01 | 7 | 2 | 14400
1800 | 14400
1800 | Use Count
Use Model | | OLYMPIC
OSWEGO AV | CR 33.40
CR 390 | CR 33.45
CL | 0.15
0.52 | 0
236 | 0
360 | 0
149 | 0
230 | 0.00 | 3
8 | 2 | 3000
6000 | 3000
6000 | No Model No Count
Use Count | | OWL CREEK LANE PACIFIC AV | SH 392
BGN | CDS
1ST ST | 0.29
0.22 | 11
0 | 20
0 | 1
0 | 0 | 0.00 | 2 | 2 | 14400
1800 | 14400
1800 | Use Count
No Model No Count | | PADAKET RD
PADEN | CR 2320
CR 25.8 | CR 2340
DENVER AV | 0.23
0.13 | 37
0 | 120
0 | 3
0 | 10
0 | 0.02
0.00 | 7 | 2 | 3000
1800 | 3000
1800 | Use Count
No Model No Count | | PAJARO WY
PALOMINO ST | VAQUERO TR
ARABIA | CDS
CR 37 | 0.08
0.36 | 92
0 | 170
0 | 7 | 10
0 | 0.03
0.00 | 3
7 | 2 | 3000
1800 | 3000
1800 | Use Count
No Model No Count | | PANORAM CIR
PARENT ST | CR 12
CR 3 | CR 12
HIGHVIEW DR | 0.55
0.27 | 0
56 | 0
110 | 0
10 | 0
20 | 0.00 | 6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
Use Count | | PARKS LN
PAWNEE DR | CDS
CR 31.6 | WCR 39
CR 52.5 | 0.14
0.55 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | PAWNEE DR
PAWNEE LN | CR 52.5
BGN | END
CR 31.6 | 0.11
0.14 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | PAWNEE LN
PEAK LN | CR 31.1
BGN | END
FIR AV | 0.17
0.16 | 0 | 0 | 0 | 0 | 0.00 | 3
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | PEAKVIEW PEARL HOWLETT RD | CR 10.5
CR 550 | CR 12
MONTGOMERY CI | 0.46
0.40 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | PECKHAM DRIVE
PELICAN SHORES CT | CR 33
PELICAN SHORES | CDS
CDS | 0.22 | 315
0 | 360
0 | 60
0 | 70
0 | 0.10
0.00 | 4 | 2 | 1800
1800 | 1800
1800 | Use Count
No Model No Count | | PELICAN SHORES PELICAN SHORES | CDS
PELICAN SHORES | PELICAN SHORES
CDS | 0.08
0.38 | 0 | 0 | 0 | 0 | 0.00
0.00 | 6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | PELICAN SHORES PELICAN SHORES S | PELICAN SHORES
CR 26 | PELICAN SHORES PELICAN SHORES | 0.08 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | PERRY ST
PHEASANT CREST | BRIGGS ST
CR 84 | RRX
END | 0.11
0.30 | <u>0</u>
55 | 0
220 | 0 7 | 0
30 | 0.00
0.01 | 6 | 2 | 18000
14400 | 18000
14400 | No Model No Count
Use Count | | PHEASANT CT
PHEASANT MEADOWS | CDS
CR 60.5 | MEADOWLARK RD
CDS | 0.08
0.24 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | PIKES PEAK DR
PIKES PEAK ST | CR 68.15
SPRUCE DR | END
CR 5 | 0.02
0.25 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | PIKES PK DR
PINTO ST | SH 392
CR 3560 | CR 68.15
CR 3580 | 0.24
0.23 | 0 | 0 | 0 | 0 | 0.00
0.00 | 1
7 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | PIPER ST
PIPER ST | CR 136.3
CR 79 | CR 136.2
CR 136.3 | 0.13
0.05 | 0 | 0 | 0 | 0 | 0.00 | 8 8 | 2 | 1800
1800
3000 | 1800
1800
3000 | No Model No Count No Model No Count | | PLEASANT HILL RD PLEASANT VIEW | PEARL HOWLETT N BEASLEY RD | END
ASHTON RD | 0.03
0.27
0.44 | 127
0 | 340 | 0 | 0 | 0.06 | 6 | 2 | 3000
3000
3000 | 3000
3000 | Use Count No Model No Count | | PLEASANTHILL AV POST VEJO LN | 3RD ST
BGN | 1ST
CR 5060 | 0.15
0.06 | 0 | 0 | 0 | 0 | 0.00
0.00 | 2 3 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | PRETTY AVE | CR 90
PIERCE CL | CL
END | 0.25
0.15 | 0 | 0 | 0 | 0 | 0.00
0.00 | 2 2 | 2 | 6000
6000 | 6000
6000 | No Model No Count
No Model No Count | | QUENTINE AV
QUENTINE AV | CR 46
GREEN ST | GREEN ST
BROAD | 0.13
0.51
0.24 | 0 | 16730
16730 | 0 | 990
990 | 0.63
0.63 | 5 | 2 | 13200
13200 | 13200
13200 | Use Model Use Model | | RACHEL DRIVE
RAILRD AV | CR 86
CL GROVER | END
WIDCH | 0.24
0.11
2.14 | 0
464 | 0 | 0
306 | 990
0
710 | 0.00
0.04 | 1 8 | 2 | 1800
14400 | 1800
14400 | No Model No Count Use Count | | RAILED AV
RAILED AV
RAILED AV | CR 85
CR 83 | CR 83
CR 136 | 1.24
1.80 | 476
373 | 640
500 | 309
231 | 420
310 | 0.04
0.02
0.02 | 8
8 | 2 | 14400
14400
14400 | 14400
14400
14400 | Use Count
Use Count | | RAILRD AV
RAILRD AV
RAILROAD AV | WIDCH
BOULEVARD B | CR 85
BOULEVARD A | 2.75
0.07 | 464
0 | 640
0 | 306
0 | 10
0 | 0.02
0.00 | 8 | 2 | 14400
14400
1800 | 14400
14400
1800 | Use Model
No Model No Count | | RAILROAD AV
RAILROAD AV | BGN
BOULEVARD D | BOULEVARD E
BOULEVARD B | 0.07
0.08
0.15 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | RAILROAD AV
RAILROAD AV | BOULEVARD E
BOULEVARD A | BOULEVARD D
END | 0.15
0.07
0.10 | 0 | 0 | 0 | 0 | 0.00
0.00
0.00 | 2 | 2 | 1800
1800 | 1800
1800
1800 | No Model No Count No Model No Count No Model No Count | | RAILROAD AV
RAILROAD AV
RAILROAD AV | SRFCH
CR 97 | OSWEGO AV
CR 110 | 0.10
0.49
1.63 | 776
437 | 1750
1050 | 489
302 | 1100
720 | 0.00
0.06
0.04 | 8
8 | 2 | 14400
14400 | 14400
14400 | Use Count Use Count | | RAILROAD AV
RAILROAD AV
RAILROAD AV | CR 114
SRFCH | CR 110
CR 118
CL | 2.33
1.67 | 437
433
669 | 1040
1550 | 286
448 | 690
1040 | 0.04
0.04
0.05 | 8
8
8 | 2 | 14400
14400
14400 | 14400
14400
14400 | Use Count
Use Count
Use Count | | RAILROAD AV
RAILROAD AV | WILSON AV
CHATOGA AV | CL
WILSON AV | 0.57
0.29 | 464
0 | 1080 | 306
0 | 710
0 | 0.03
0.04
0.00 | 8 8 | 2 | 14400
14400
14400 | 14400
14400
14400 | Use Count
No Model No Count | | RAILROAD AV | CR 89
CL | CHATOGA AV
CR 89 | 0.29
0.24
0.18 | 0 669 | 0 | 0
448 | 0
1040 | 0.00
0.00
0.05 | 8
8 | 2 | 14400
14400
14400 | 14400
14400
14400 | No Model No Count | | RAILROAD AV
RAILROAD AV | CR 104 | CR 97 | 1.89 | 417 | 1000 | 300 | 720 | 0.03 | 8 | 2 | 14400 | 14400 | Use Count Use Count | | RAILROAD AV
RAILROAD AV | CR 100
WALNUT ST | CR 104
CR 100 | 2.66
0.89 | 480
616 | 1080
1430 | 307
419 | 690
970 | 0.04
0.05 | 8
8
8 | 2 | 14400
14400 | 14400
14400 | Use Count Use Count | | RAILROAD AV
RAILROAD AV | OSWEGO AV
CR 95 | WALNUT ST
CR 112 | 0.47
0.88 | 390
0 | 0 | 254
0 | 590
0 | 0.03
0.00 | 8 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count | | RAILROAD AV
RAILROAD AV | CR 112
CR 110 | CR 114
CR 95 | 1.06
0.31 | 405
0 | 9/0 | 271
0 | 650
0 | 0.03
0.00 | 8 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count | | RAILROAD AV | SH 14
SRFCH | SRFCH
CR 105 | 4.46
0.19 | 130
0 | 1250 | 55
0 | 20
0 | 0.10
0.00 | 8 | 2 | 6000
14400 | 6000
14400 | Use Model
No Model No Count | | RAILROAD AV | | | | | | | | | | | | | | | RAILROAD AV RAILROAD DR RANGEVIEW DRIVE RED TAIL COURT | CR 37
CR 53
CR 38 | CL
CDS
CDS | 0.56
0.42
0.29 | 249
0
0 | 300 | 27
0
0 | 30
0
0 | 0.03
0.00
0.00 | 4 | 2 | 6000
1800
1800 | 6000
1800
1800 | Use Count No Model No Count No Model No Count | | REMINGTON ROAD | BGN | CR 15 | 0.07 | 0 | 0 | 0 | 0 | 0.00 | 1 1 | 2 | 1800 | 1800 | No Model No Count | |--|--------------------------------|--------------------------|----------------------|--------------|---------------|------------|--------------|----------------------|---------------|---------------|----------------|----------------------|--| | RICHARD ST
RILEY ST | BARLEY
CL | CR 18
RAILROAD AV | 1.00
0.15 | 0 | 0 | 0 | 0
30 | 0.00 | 7 | 2 | 1800
14400 | 1800
14400 | No Model No Count No Model No Count Derived | | RIVER VIEW | BGN | CR
64 | 0.08 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 1800 | 1800 | No Model No Count | | RIVER VIEW
RIVER VIEW RD | BGN
CENTER DR | CR 64
CR 26 | 0.10
0.18 | 0 | 0 | 0 | 0 | 0.00 | 3
6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | ROANOAKE AV
RODNEY ST | CR 390
CR 13.5 | CR 105
CR 15 | 0.33
0.40 | 0 | 0 | 0 | 0 | 0.00 | 8
1 | 2 | 6000
3000 | 6000
3000 | No Model No Count
No Model No Count | | ROSEVLT ST
ROWE AV | CR 136
CR 31 | CR 136.2
CL PIERCE | 0.05
0.75 | 0 | 0
3550 | 0 | 0
210 | 0.00 | 8 | 2 | 1800
13200 | 1800
13200 | No Model No Count
Use Model | | ROWE AV
ROWE AV | RRX / WIDCH
CL PIERCE | PRIDDY ST
US 85 | 0.21
0.24 | 0 | 1010
3324 | 0 | 20
210 | 0.04
0.13 | 2 | 2 | 14400
13200 | 14400
13200 | Use Model
Use Model | | ROWE AV | US 85 | RRX / WIDCH | 0.02 | 0 | 1010 | Ö | 20 | 0.04 | 2 | 2 | 14400 | 14400 | Use Model | | RUE DE TRUST
RUSHMORE | CR 3
BIG BEND | CR 5
END | 1.04
0.04 | 408
0 | 1600
0 | 37
0 | 140
0 | 0.06 | 6 | 2 | 13200
3000 | 13200
3000 | Use Count
No Model No Count | | S LEDYARD RD
SAGE CT | CR 3455
NORTHMOOR | CR 3454
CDS | 0.71
0.05 | 0 | 0 | 0 | 0 | 0.00 | <u>4</u>
5 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | SAGE HILL ROAD
SAGEBRUSH WY | CR 15
CR 37 | CDS
CDS | 0.24
0.21 | 26
0 | 110
0 | 4
0 | 20
0 | 0.00 | 7 | 2 | 14400
14400 | 14400
14400 | Use Count
No Model No Count | | SAGUARO CT
SANDY CI | CDS
BGN | CACTUS
CR 12 | 0.11
0.02 | 0 | 0 | 0 | 0 | 0.00 | 5
6 | 2 | 3000
13200 | 3000
13200 | No Model No Count
No Model No Count | | SANDYKNOLLS BD
SCHULTZ LANE | BGN
CR 1 | CR 53
CDS | 0.49
0.12 | 83
0 | 90 | 8
0 | 10
0 | 0.02
0.00 | 4 | 2 | 3000
1800 | 3000
1800 | Use Count No Model No Count | | SCIOTIA ST | CR 984 | CR 986 | 0.18 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 6000 | 6000 | No Model No Count | | SCIOTIA ST
SCOTTSBLUFF CT | CR 986
BGN | CR 1035
CR 33.13 | 0.07
0.05 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | SECOND AV
SECOND AV | BGN
BOULEVARD A | BOULEVARD E
END | 0.04 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SEELEY CT
SHENANDOAH | CDS
CR 3305 | CR 35
CR 3328 | 0.07
0.25 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | SHENANDOAH
SHENANDOAH | CR 3305
CR 5236 | CR 5235
CR 5237 | 0.39
0.07 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | SHETLAND ST | APPALOOSA | CR | 0.17 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800 | 1800 | No Model No Count | | SHETLAND ST
SHILOH LANE | GATE
END | APPALOOSA
SHILOH ROAD | 0.14
0.10 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SHILOH LANE
SHILOH ROAD | SHILOH ROAD
CDS | CR 64.5
SHILOH LANE | 0.02
0.18 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SHILOH ROAD
SHIRE RD | SHILOH LANE
BGN | CDS
CR 100 | 0.30
0.15 | 0
34 | 0
3900 | 0 | 0
150 | 0.00
0.14 | 3 | 2 | 1800
14400 | 1800
14400 | No Model No Count
Use Model | | SHORELINE DR
SHOSHONE | CDS
LONGVIEW BLVD | CR 7
END | 0.28
0.02 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | SIASCONE RD | BGN | CR 70
CR 22 | 0.27 | 85 | 220 | 5
29 | 10 | 0.04 | 1 6 | 2 | 3000 | 3000 | Use Count | | SIERRAVISTA
SIOUX CT | CR 15
CR 15 | END | 0.60
0.07 | 179
0 | 330
0 | 0 | 50
0 | 0.06 | 6 | 2 | 3000
3000 | 3000
3000 | Use Count
No Model No Count | | SKYLARK DRIVE
SKYWAY DR | SH 14
DEHNING WY | CDS
VISTA VIEW DR | 0.45
0.66 | 0
285 | 0
530 | 0
29 | 0
50 | 0.00
0.06 | 1
6 | 3 | 1800
4500 | 1800
4500 | No Model No Count
Use Count | | SKYWAY DR
SLATE ST | FAIRVIEW
BGN | DEHNING WY
FLINT AV | 0.26
0.20 | 271
0 | 510
0 | 24
0 | 40
0 | 0.06
0.00 | 6
8 | 3 2 | 4500
1800 | 4500
1800 | Use Count
No Model No Count | | SOUTH RIM
SPECIALTY PLACE | LONGVIEW BLVD
I-25 FRONTAGE | END
END | 0.06
0.16 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | SPRUCE DR | FIR AV | CR 5 | 0.24 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000 | 3000 | No Model No Count | | ST
ST | 3RD AV
3RD AV | END
END | 0.09
0.08 | 0 | 0 | 0 | Ö | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | ST
ST | CR 35.75
CL | 21ST AV
CR 35.75 | 0.60
0.02 | 3660
0 | 13750
1540 | 476
0 | 1790
60 | 0.57
0.06 | 3 | 2 | 12000
13200 | 12000
13200 | Use Count
Use Model | | ST
ST 3 | SERVICE RD
WALNUT | CR 41
CL LA SALLE | 0.20
0.02 | 0 | 0
360 | 0 | 0
20 | 0.00 | 4 | 2 | 1800
6000 | 1800
6000 | No Model No Count
Use Model | | STAGECOACH RD
STAGECOACH RD | CR 7.5
CR 7.5 | END
END | 0.24
0.24 | 0 | 0 | 0 | 0 | 0.00 | 6 | 3 | 4500
4500 | 4500
4500 | No Model No Count
No Model No Count | | STAGHORN CT
STARR LN | NMOOR
168TH AV | END
CDS
END | 0.16
0.15 | 0 | 0 | 0 | 0 | 0.00 | 5 | 2 | 3000
6000 | 3000
6000 | No Model No Count | | STEVEN ST | CR 13.5 | CR 13.75 | 0.30 | 76 | 240 | 2 | 10 | 0.04 | 1 | 2 | 3000 | 3000 | No Model No Count
Use Count | | STOREY ST
SUMMIT VIEW CT | FRONT ST
SUMMIT PEAK DR | 2ND ST
CDS | 0.07
0.12 | 0 | 0 | 0 | 0 | 0.00 | 7
5 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SUMMIT WY
SUMMITPEAK DR | BGN
SUMMIT VIEW CT | FIR AV
CDS | 0.15
0.10 | 0 | 0 | 0 | 0 | 0.00 | 6
5 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | SUMMITPEAK DR
SUNRISE LN | CR 34
CR 10 | SUMMIT VIEW CT
END | 0.10
0.14 | 0 | 0 | 0 | 0 | 0.00 | 5
7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SUNRISE LN
SUNSET LN | CR 8.5
MEADOW | FAIR
SUNRISE | 0.33
0.24 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | SUNSHINE LANE
SYLVAN LN | CR 29 | CDS | 0.21 | 0 | 0 | 0 | 0 | 0.00 | 3
6 | 2 | 1800 | 1800 | No Model No Count | | SYLVIA LN | BGN
CR 10.6 | BIG BEND
END | 0.02
0.17 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | TATE AV
TETON | CR 6
LONGVIEW BLVD | CR 8
END | 1.00
0.06 | 136
0 | 190
0 | 19
0 | 30
0 | 0.02
0.00 | 6 | 2 | 6000
3000 | 6000
3000 | Use Count
No Model No Count | | THIRD AV
THIRD AV | BGN
BOULEVARD A | BOULEVARD E
END | 0.04 | 0 | 0 | 0 | 0 | 0.00 | 2 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | THUNDERBIRD
TIOGA ST | LONGVIEW BLVD
CR 984 | END
DEARBORN AV | 0.08 | 0 | 0 | 0 | 0 | 0.00 | 6
8 | 2 | 3000
1800 | 3000
1800 | No Model No Count
No Model No Count | | TIOGA ST
TODD AV | DEARBORN AV
URBDRY | END
CR 41 | 0.02
0.87 | 0
821 | 0 | 0
255 | 0
500 | 0.00
0.06 | 8 | 2 | 1800
14400 | 1800
14400 | No Model No Count
Use Count | | TODD AV | ELM ST | CL | 0.01 | 0 | 280 | 0 | 30 | 0.01 | 4 | 2 | 13200 | 13200 | Use Model | | TODD AV
TRAIL RIDGE | CL
LONGVIEW BLVD | URBDRY
END | 0.02
0.06 | 0 | 280
0 | 0 | 30
0 | 0.01 | 4
6 | 2 | 13200
3000 | 13200
3000 | Use Model
No Model No Count | | TURNER BD
TWO RIVERS PY | SRFCH
CR 52 | SH 119
CL | 0.25
0.50 | 0
4037 | 7730 | 0
646 | 0
480 | 0.00
0.29 | 6
3 | 2 | 3000
13200 | 3000
13200 | No Model No Count
Use Model | | TWO RIVERS PY UPPER HIGHLAND RD | CR 50.1
UPPER RIDGE RD | CR 52
SOUTH | 1.16
0.14 | 0 | 9560
0 | 0 | 580
0 | 0.33 | <u>3</u> | 2 | 14400
3000 | 14400
3000 | Use Model
No Model No Count | | UPPER RIDGE RD UPPER RIDGE RD | DURANGO PL
UPPER HIGHLAND | BUTTE DR
DURANGO PL | 0.04
0.15 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | UTE DR
UTE DR | BGN
CR 31.1 | CR 31.6
END | 0.15
0.18
0.17 | 0 | 0 | 0 | 0 | 0.00
0.00
0.00 | 3 3 | 2 | 3000
3000 | 3000
3000
3000 | No Model No Count
No Model No Count | | UTE DR | CR 31.6 | CR 52.4 | 0.21 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000 | 3000 | No Model No Count | | VANTAGE DR
VAQUERO TR | CR 8
PAJARO WY | CR 8.5
49TH ST | 0.27
0.11 | 92 | 170 | 0
7 | 0
10 | 0.00 | 7 | 2 | 1800
3000 | 1800
3000 | No Model No Count
Use Count | | VAQUERO TR
VICKORY AVE | CDS
CR 90 | PAJARO WY
CARLIN ST | 0.08 | 92
0 | 170
0 | 7
0 | 10
0 | 0.03 | 3
2 | 2 | 3000
1800 | 3000
1800 | Use Count
No Model No Count | | VICKORY AVE
VICTOR DR | CARLIN ST
PEARL HOWLETT | END
BRYANT DR | 0.03
0.15 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
3000 | 1800
3000 | No Model No Count
No Model No Count | | VISTA COMM
VISTA LAKE RD | BGN
CDS | SH 119
CDS | 0.20
0.30 | 0 | 0 | 0 | 0 | 0.00
0.00 | 6
4 | 2 | 3000
14400 | 3000
14400 | No Model No Count
No Model No Count | | VISTA LAKE RD | CR 51 | VISTA LAKE RD | 0.02 | 19 | 40 | 4 | 10 | 0.00 | 4 | 2 | 14400 | 14400 | Use Count | | VISTA VIEW DR VISTA VIEW DR | BGN
FAIRVIEW | CR 5
DEHNING WY | 0.75
0.26 | 0
534 | 1000 | 0
37 | 0
70 | 0.00
0.11 | 6 | 3 | 4500
4500 | 4500
4500 | No Model No Count Use Count | | WAGON TR
WALNUT ST | CR 7
CR 98 | CR 38
CR 390 | 0.17
0.34 | 41
260 | 90
410 | 4
205 | 10
320 | 0.00 | 5
8 | 2
| 13200
6000 | 13200
6000 | Use Count
Use Count | | WARNER AV
WATERFORD HILL PL | 4TH ST
WATERFORD HILL | CR 21
CDS | 0.15
0.09 | 0 | 0 | 0 | 0 | 0.00 | 8
1 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | WATERFORD HILL WY
WATERFORD HILL WY | CDS
WATERFORD HILL | WATERFORD HILL
CR 15 | 0.10
0.19 | 0 | 0 | 0 | 0 | 0.00 | 1 1 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | WATERSIDE LN
WB FARMS ROAD | CDS
HILL ROAD | CR 13
CR 80 | 0.54
0.19 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | WB FARMS ROAD | CDS | HILL ROAD | 0.12 | 0 | 0 | 0 | 0 | 0.00 | 1 4 | 2 | 1800 | 1800 | No Model No Count | | WELD COUNTY PKWY WELD COUNTY PKWY | US 34
STR | CR 58
CR 47.5/CR 58 | 1.18
0.41
0.80 | 3960
4502 | 9270 | 2020
47 | 4270
4220 | 0.15
0.16 | 4 | 4 | 28800
28800 | 28800
28800 | Use Count
Use Count | | WELD COUNTY PKWY WELD COUNTY PKWY | E 18TH ST / HOLLY | STR
STR | 0.31 | 3697
4502 | 9480
9270 | 1627
47 | 4170
4220 | 0.12
0.16 | 4 | 4 | 38400
28800 | 38400
28800 | Use Count
Use Count | | WELD COUNTY PKWY
WESTERN DR | STR
CR 8 | CR 60.5
CR 8.5 | 0.27
0.26 | 0 | 9480
0 | 0 | 4170
0 | 0.12
0.00 | 7 | <u>4</u>
2 | 38400
1800 | 38400
1800 | No Model No Count Derived
No Model No Count | | WESTVIEW RD
WESTVIEW RD | CR1
BUFFALO RD | BUFFALO RD | 0.15
0.17 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 1800
1800 | 1800
1800 | No Model No Count
No Model No Count | | WHITE SANDS ST | BGN | CR 52.1
52.1 | 0.03 | 0 | 0 | Ö | 0 | 0.00 | 3 | 2 | 3000 | 3000 | No Model No Count | | WHITE SANDS ST
WILD BASIN | CR 52.3
LONGVIEW BLVD | END | 0.04
0.06 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | WILLIAM ST
WILLIAM ST | CR 13.1
CAROLINE ST | CR 13.3
MARY ST | 0.13
0.06 | 0 | 0 | 0 | 0 | 0.00 | 6
6 | 2 | 3000
3000 | 3000
3000 | No Model No Count
No Model No Count | | WILSON AV
WILSON AV | CR 87
STR | CL GROVER
SRFCH | 0.40
0.88 | 0
41 | 0
60 | 0
16 | 0
20 | 0.00
0.01 | 8 | 2 2 | 14400
6000 | 14400
6000 | No Model No Count
Use Count | | | | | | | | | | | | | | | | | WILSON AV | SRFCH | CR 87 | 0.05 | 41 | 100 | 16 | 40 | 0.00 | 8 | 2 | 14400 | 14400 | Use Count | |------------------|---------------|------------|------|-----|-----|-----|-----|------|---|---|-------|-------|-------------------| | WILSON AV | CL | RR AV | 0.34 | 0 | 0 | 0 | 0 | 0.00 | 8 | 2 | 14400 | 14400 | No Model No Count | | WILSON AV | RR AV | CHATOGA AV | 0.25 | 253 | 570 | 111 | 250 | 0.02 | 8 | 2 | 14400 | 14400 | Use Count | | WINTER WY | CDS | CR 70 | 0.09 | 0 | 0 | 0 | 0 | 0.00 | 1 | 2 | 1800 | 1800 | No Model No Count | | WOODRUFF ST | BARLEY | CR 18 | 1.00 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 1800 | 1800 | No Model No Count | | WREN | CR 3510 | CDS | 0.08 | 0 | 0 | 0 | 0 | 0.00 | 7 | 2 | 3000 | 3000 | No Model No Count | | WYE INTERSECTION | CR 50 | CR 17 | 0.10 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 14400 | 14400 | No Model No Count | | YELLOWSTONE | LONGVIEW BLVD | END | 0.06 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000 | 3000 | No Model No Count | | YELLWSTONE | CR 52 | CR 52.3 | 0.30 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000 | 3000 | No Model No Count | | YOSEMITE | LONGVIEW BLVD | END | 0.05 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000 | 3000 | No Model No Count | | YOSEMITE | CR 33.13 | CR 52.35 | 0.96 | 125 | 240 | 5 | 10 | 0.04 | 3 | 2 | 3000 | 3000 | Use Count | | YUCCA CT | CDS | CACTUS | 0.11 | 0 | 0 | 0 | 0 | 0.00 | 5 | 2 | 3000 | 3000 | No Model No Count | | ZION | LONGVIEW BLVD | END | 0.06 | 0 | 0 | 0 | 0 | 0.00 | 6 | 2 | 3000 | 3000 | No Model No Count | | ZION DR | CR 52.25 | CR 52.25 | 0.30 | 0 | 0 | 0 | 0 | 0.00 | 3 | 2 | 3000 | 3000 | No Model No Count | #### APPENDIX B - TYPICAL ROAD CROSS-SECTION DIAGRAMS The width of a roadway is an important design consideration to ensure that it is appropriately sized to serve its function. Because of the diversity within the County, two major roadway categories have been established. The two categories are rural and urban road standards. Urban road standards will serve areas which tend to be more developed and need to provide for multiple users (bicyclists, pedestrians, parallel parking, etc.). Rural roads will typically serve only vehicular traffic, and at times bicycles. Cross-sections are created to provide a visual guide depicting the initial, interim, and ultimate phase cross-sections for these road classifications. #### Rural Road Standards The rural roadways will not typically require curb and gutter or sidewalk, although the County may require either, or both in unique circumstances. Widths of lanes and shoulders will vary depending upon the specific classification and the potential traffic volume which the roadway may carry. Roads carrying fewer than 200 vehicles per day need not be paved or treated for dust control. The need for paved shoulders is also dependent upon the level of traffic and safety. Final design and construction details will be determined by the Public Works Department. Final design and construction criteria taken into consideration may include but are not limited to; use of the roadway, density of development, topographical characteristics and nearby development. For construction in which only a portion of the ultimate cross-section is intended to be completed, the partial design will need to allow for the eventual widening to the ultimate cross-section. The design for the partial or interim crosssection roadway will need to incorporate ultimate design information to ensure that the first phase of roadway construction is appropriate and would not need to be removed at a future date when the full width cross-section is completed. The rural road cross-sections are illustrated on the following pages in this appendix. #### **Urban Road Standards** Three roadway classifications are identified for those areas that are associated with the community's urban growth areas. They include arterial, collector, and local street classifications. Urban road standards will include 12-foot lanes, sidewalk and curb and gutter. Arterial and collector roads will also include a striped bike lane. Turn lanes may be necessary as determined by the County. Since almost all the municipalities have different ROW cross-sections adopted for their community, it makes it very difficult for the County to match them. The urban road cross-sections are illustrated on the following pages in this appendix. ### TYPICAL CROSS SECTIONS - RURAL ARTERIAL NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY # WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 #### TYPICAL CROSS SECTIONS - RURAL COLLECTOR TURN LANES AS REQUIRED BY PUBLIC WORKS AUXILIARY LANE SECTION TRAVEL LANES W/TURNS NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY # WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 #### TYPICAL CROSS SECTIONS - RURAL LOCAL RURAL LOCAL-PAVED TURN LANES AS REQUIRED BY PUBLIC WORKS NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY ## WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 ### TYPICAL CROSS SECTIONS - URBAN ARTERIAL NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY # WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 ### TYPICAL CROSS SECTIONS - URBAN COLLECTOR #### ULTIMATE SECTION TURN LANES AS REQUIRED BY PUBLIC WORKS MINIMUM 5' SIDEWALKS REQUIRED NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY ## WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 ## TYPICAL CROSS SECTIONS - URBAN LOCAL SIDEWALKS AS REQUIRED BY PUBLIC WORKS MINIMUM 5' SIDEWALKS REQUIRED NOT TO SCALE: GRAPHICAL REPRESENTATION ONLY ## WELD COUNTY PUBLIC WORKS DEPARTMENT 1111 H Street/Post Office Box 758 Greeley, Colorado 80632-0758 ## APPENDIX C - CONCEPTUAL CONSTRUCTION COST ESTIMATE #### RURAL ARTERIAL WIDEN 2-4 LANES (RECONSTRUCT FROM INITIAL TO ULTIMATE SECTION) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$90,000 | 1 | \$90,000 | | Removal of Asphalt Mat | SY | \$10 | 15,254 | \$152,540 | | Embankment Material (Complete in Place) | CY | \$20 | 19,350 | \$387,000 | | Aggregate Base Course (9 inch thickness) | TON | \$30 | 19,430 | \$582,912 | | Hot Mix Asphalt (8 inch thickness) | TON | \$95 | 16,603 | \$1,577,298 | | Subtotal Costs | | | | \$2,789,750 | | Utilities | LS | \$900,000 | 1 | \$900,000 | | Traffic Control @ 10% of Subtotal | LS | \$278,975 | 1 | \$278,975 | | Signing and Striping @ 4% of Subtotal | LS | \$111,590 | 1 | \$111,590 | | Drainage @ 17% of Subtotal | LS | \$474,257 | 1 | \$474,257 | | Irrigation @ 20% of Subtotal | LS | \$557,950 | 1 | \$557,950 | | Geogrid @ 5% of Subtotal | LS | \$139,487 | 1 | \$139,487 | | Right of Way 17% of Subtotal | LS | \$474,257 | 1 | \$474,257 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$223,180 | 1 | \$223,180 | | Design and Construction Engineering @ 15% of | | | | | | Subtotal | LS | \$418,462 | 1 | \$418,462 | | Mobilization @ 10% of Subtotal | LS | \$278,975 | 1 | \$278,975 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$6,646,885 | #### RURAL COLLECTOR (RECONSTRUCT FROM INITIAL TO ULTIMATE SECTION W/ AUXILIARY | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$80,000 | 1 | \$80,000 | | Removal of Asphalt Mat | SY | \$10 | 16,427 | \$164,270 | | Embankment Material (Complete in Place) | CY | \$20 | 15,000 |
\$300,000 | | Aggregate Base Course (9 inch thickness) | TON | \$30 | 15,787 | \$473,616 | | Hot Mix Asphalt (8 inch thickness) | TON | \$95 | 13,490 | \$1,281,555 | | Subtotal Costs | | | | \$2,299,441 | | Utilities | LS | \$700,000 | 1 | \$700,000 | | Traffic Control @ 9% of Subtotal | LS | \$206,950 | 1 | \$206,950 | | Signing and Striping @ 2% of Subtotal | LS | \$45,989 | 1 | \$45,989 | | Drainage @ 13% of Subtotal | LS | \$298,927 | 1 | \$298,927 | | Irrigation @ 18% of Subtotal | LS | \$413,899 | 1 | \$413,899 | | Geogrid @ 3% | LS | \$68,983 | | | | Right of Way 13% of Subtotal | LS | \$298,927 | 1 | \$298,927 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$183,955 | 1 | \$183,955 | | Design and Construction Engineering @ 13% of | | | | | | Subtotal | LS | \$298,927 | 1 | \$298,927 | | Mobilization @ 8% of Subtotal | LS | \$183,955 | 1 | \$183,955 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$4,930,971 | #### RURAL COLLECTOR TYPICAL SECTION (RECONSTRUCT FROM INITIAL TO ULTIMATE SECTION) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$80,000 | 1 | \$80,000 | | Removal of Asphalt Mat | SY | \$10 | 16,427 | \$164,270 | | Embankment Material (Complete in Place) | CY | \$20 | 9,900 | \$198,000 | | Aggregate Base Course (9 inch thickness) | TON | \$30 | 10,930 | \$327,888 | | Hot Mix Asphalt (8 inch thickness) | TON | \$95 | 9,339 | \$887,230 | | Subtotal Costs | | | | \$1,657,388 | | Utilities | LS | \$700,000 | 1 | \$700,000 | | Traffic Control @ 9% of Subtotal | LS | \$149,165 | 1 | \$149,165 | | Signing and Striping @ 2% of Subtotal | LS | \$33,148 | 1 | \$33,148 | | Drainage @ 13% of Subtotal | LS | \$215,460 | 1 | \$215,460 | | Irrigation @ 18% of Subtotal | LS | \$298,330 | 1 | \$298,330 | | Geogrid @ 3% | LS | \$49,722 | | | | Right of Way 13% of Subtotal | LS | \$215,460 | 1 | \$215,460 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$132,591 | 1 | \$132,591 | | Design and Construction Engineering @ 13% of | | | | | | Subtotal | LS | \$215,460 | 1 | \$215,460 | | Mobilization @ 8% of Subtotal | LS | \$132,591 | 1 | \$132,591 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$3,749,594 | ## RURAL COLLECTOR -AUXILIARY LANES (RECONSTRUCT FROM INITIAL TO ULTIMATE SECTION W/ AUXILIARY) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$80,000 | 1 | \$80,000 | | Removal of Asphalt Mat | SY | \$10 | 16,427 | \$164,270 | | Embankment Material (Complete in Place) | CY | \$20 | 15,000 | \$300,000 | | Aggregate Base Course (9 inch thickness) | TON | \$30 | 15,787 | \$473,616 | | Hot Mix Asphalt (8 inch thickness) | TON | \$95 | 13,490 | \$1,281,555 | | Subtotal Costs | | | | \$2,299,441 | | Utilities | LS | \$700,000 | 1 | \$700,000 | | Traffic Control @ 9% of Subtotal | LS | \$206,950 | 1 | \$206,950 | | Signing and Striping @ 2% of Subtotal | LS | \$45,989 | 1 | \$45,989 | | Drainage @ 13% of Subtotal | LS | \$298,927 | 1 | \$298,927 | | Irrigation @ 18% of Subtotal | LS | \$413,899 | 1 | \$413,899 | | Geogrid @ 3% | LS | \$68,983 | | | | Right of Way 13% of Subtotal | LS | \$298,927 | 1 | \$298,927 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$183,955 | 1 | \$183,955 | | Design and Construction Engineering @ 13% of Subtotal | LS | \$298,927 | 1 | \$298,927 | | Mobilization @ 8% of Subtotal | LS | \$183,955 | 1 | \$183,955 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$4,930,971 | ## RURAL COLLECTOR - LANE/SHOULDER WIDENING (WIDEN FROM INITIAL TO ULTIMATE SECTION) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$80,000 | 1 | \$80,000 | | Removal of Asphalt Mat | SY | \$10 | 7,040 | \$70,400 | | Embankment Material (Complete in Place) | CY | \$20 | 7,500 | \$150,000 | | Aggregate Base Course (9 inch thickness) | TON | \$30 | 8,501 | \$255,024 | | Hot Mix Asphalt (8 inch thickness) | TON | \$95 | 7,264 | \$690,068 | | Subtotal Costs | | | | \$1,245,492 | | Utilities | LS | \$700,000 | 1 | \$700,000 | | Traffic Control @ 7% of Subtotal | LS | \$87,184 | 1 | \$87,184 | | Signing and Striping @ 2% of Subtotal | LS | \$24,910 | 1 | \$24,910 | | Drainage @ 10% of Subtotal | LS | \$124,549 | 1 | \$124,549 | | Irrigation @ 10% of Subtotal | LS | \$124,549 | 1 | \$124,549 | | Geogrid @ 2% | LS | \$24,910 | | | | Right of Way 10% of Subtotal | LS | \$124,549 | 1 | \$124,549 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$99,639 | 1 | \$99,639 | | Design and Construction Engineering @ 10% of Subtotal | LS | \$124,549 | 1 | \$124,549 | | Mobilization @ 7% of Subtotal | LS | \$87,184 | 1 | \$87,184 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$2,742,607 | #### RURAL LOCAL - GRAVEL TO PAVED (RECONSTRUCT FROM INITIAL TO ULTIMATE SECTION) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |---|------|-----------|----------|-------------| | Clearing and Grubbing | LS | \$70,000 | 1 | \$70,000 | | Removal of Asphalt Mat | SY | \$10 | - | \$0 | | Embankment Material (Complete in Place) | CY | \$20 | 7,280 | \$145,600 | | Aggregate Base Course (8 inch thickness) | TON | \$30 | 7,594 | \$227,821 | | Hot Mix Asphalt (6 inch thickness) | TON | \$95 | 5,421 | \$514,976 | | Subtotal Costs | | | | \$958,397 | | Utilities | LS | \$250,000 | 1 | \$250,000 | | Traffic Control @ 5% of Subtotal | LS | \$47,920 | 1 | \$47,920 | | Signing and Striping @ 1% of Subtotal | LS | \$9,584 | 1 | \$9,584 | | Drainage @ 13% of Subtotal | LS | \$124,592 | 1 | \$124,592 | | Irrigation @ 5% of Subtotal | LS | \$47,920 | 1 | \$47,920 | | Geogrid @ 3% | LS | \$28,752 | | | | Right of Way 5% of Subtotal | LS | \$47,920 | 1 | \$47,920 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$76,672 | 1 | \$76,672 | | Design and Construction Engineering @ 10% of | | | | | | Subtotal | LS | \$95,840 | 1 | \$95,840 | | Mobilization @ 6% of Subtotal | LS | \$57,504 | 1 | \$57,504 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$1,716,348 | ## RURAL LOCAL – LANE/SHOULDER WIDENING (WIDEN LANE AND SHOULDERS FROM INITIAL TO ULTIMATE SECTION) | ITEM DESCRIPTION | UNIT | UNIT COST | QUANTITY | TOTAL COST | |--|------|-----------|----------|------------| | Clearing and Grubbing | LS | \$60,000 | 1 | \$60,000 | | Removal of Asphalt Mat | SY | \$10 | 2,500 | \$25,000 | | Embankment Material (Complete in Place) | CY | \$20 | 7,280 | \$145,600 | | Aggregate Base Course (8 inch thickness) | TON | \$30 | 3,255 | \$97,638 | | Hot Mix Asphalt (6 inch thickness) | TON | \$95 | 2,323 | \$220,704 | | Subtotal Costs | | | | \$548,942 | | Utilities | LS | \$200,000 | 1 | \$200,000 | | Traffic Control @ 5% of Subtotal | LS | \$27,447 | 1 | \$27,447 | | Signing and Striping @ 1% of Subtotal | LS | \$5,489 | 1 | \$5,489 | | Drainage @ 10% of Subtotal | LS | \$54,894 | 1 | \$54,894 | | Irrigation @ 4% of Subtotal | LS | \$21,958 | 1 | \$21,958 | | Geogrid @ 2% | LS | \$10,979 | | | | Right of Way 3% of Subtotal | LS | \$16,468 | 1 | \$16,468 | | Subsurface Utility Engineering @ 8% of Subtotal | LS | \$43,915 | 1 | \$43,915 | | Design and Construction Engineering @ 9% of Subtotal | LS | \$49,405 | 1 | \$49,405 | | Mobilization @ 5% of Subtotal | LS | \$27,447 | 1 | \$27,447 | | TOTAL ESTIMATED CONSTRUCTION COSTS | | | | \$995,966 | #### APPENDIX D - REFERENCES AND SOURCES Berthoud (2016) Town of Berthoud Master Street Plan Boulder County (2019) Boulder County Transportation Master Plan CDOT (2020) CO 52 Planning and Environmental Linkages Study Existing Conditions Report Ch2m (2018) US 34 Planning and Environmental Linkages Study Charlier Associates, Inc. (2016) City of Brighton Transportation Master Plan City and County of Broomfield (2016) Broomfield 2016 Transportation Plan City of Greeley (2011) Greeley Transportation Plan Civil Resources (2016) Ault Comprehensive Plan Civil Resources (2016) Nunn Comprehensive Plan Clarion Associates (2016) Longmont Multimodal and Comprehensive Plan CDOT (2019) Colorado Highway 71 Truck Freight Diversion Feasibility Study Coppola, E.G., P.E., PTOE,. (July 2008) Town of Severance Transportation Plan Denver Regional Council of Governments (May 2019). 2040 Metro Vision Regional Transportation Plan Fehr & Peers (2020) Town of Windsor Master Transportation Plan Felsburg, Holt & Ullevig. (May 2020) 2045 Statewide Transportation Plan (Draft) Felsburg, Holt & Ullevig. (May 2020) 2045 Statewide Transit Plan (Draft) Felsburg, Holt & Ullevig. (December 2012) Adams County Transportation Plan Felsburg, Holt & Ullevig. (June 2003) City of Dacono Transportation Plan Felsburg, Holt & Ullevig. (March 2004) City of Evans Transportation Plan Felsburg, Holt & Ullevig. (2019) State Highway 66 Planning and Environmental Linkages Study Felsburg, Holt & Ullevig. (November 2013) Town of Eaton Transportation Plan Felsburg, Holt & Ullevig. (January 2018) Town of Erie Transportation Master Plan Felsburg, Holt & Ullevig. (February 2008) Town of Johnstown Transportation Plan Felsburg, Holt & Ullevig. (August 2010) Town of LaSalle Transportation Plan Felsburg, Holt & Ullevig. (2018) Town of Mead Transportation Plan Felsburg, Holt & Ullevig. (November 2008) Town of Milliken Transportation Master Plan Felsburg, Holt & Ullevig. (2015) Town of Timnath Transportation Plan Felsburg, Holt & Ullevig. (May 2020) Upper Front Range 2045 Regional Transportation Plan (Draft) Felsburg, Holt & Ullevig. (2017) US 85 Planning and Environmental Linkages Study HDR (August 2017) Larimer County Transportation Plan JR Engineering (2018) City of Fort Lupton Transportation Plan Matrix Design
Group (October 2017) Town of Lochbuie Comprehensive Plan North Front Range Metropolitan Planning Organization (September 2019) North Front Range 2045 Regional Transportation Plan Resource Conservation Partners, LLC (2016) Town of Kersey Comprehensive Plan Stolfus (November 2019) Transportation Plan Town of Hudson, CO Town of Platteville (2017) Comprehensive Plan Town of Platteville Weld County Planning Department (November 2020) Weld County Comprehensive Plan